import cv2 from matplotlib import pyplot as plt import numpy as np import easyocr import imutils import random img = cv2.imread("Test5.jpg") #read image plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) plt.title('Original Image') plt.show() gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #convert image to gray bfilter = cv2.bilateralFilter(gray, 11, 17, 17) #Noise reduction plt.imshow(cv2.cvtColor(bfilter, cv2.COLOR_BGR2RGB)) #show processed image plt.title('Processed Image') plt.show() edged = cv2.Canny(bfilter, 30, 200) #Edge detection plt.imshow(cv2.cvtColor(edged, cv2.COLOR_BGR2RGB)) plt.title('Edged Processed Image') plt.show() keypoints = cv2.findContours(edged.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) #Find contours contours = imutils.grab_contours(keypoints) #Grab contours contours = sorted(contours, key=cv2.contourArea, reverse=True)[:10] #Sort contours #Loop over our contours to find the best possible approximate contour of 10 contours location = None for contour in contours: approx = cv2.approxPolyDP(contour, 10, True) if len(approx) == 4: location = approx break print("Location: ", location) mask = np.zeros(gray.shape, np.uint8) #create blank image with same dimensions as the original image new_image = cv2.drawContours(mask, [location], 0,255, -1) #Draw contours on the mask image new_image = cv2.bitwise_and(img, img, mask=mask) #Take bitwise AND between the original image and mask image plt.imshow(cv2.cvtColor(new_image, cv2.COLOR_BGR2RGB)) #show the final image plt.show() (x,y) = np.where(mask==255) #Find the co-ordinates of the four corners of the document (x1, y1) = (np.min(x), np.min(y)) #Find the top left corner (x2, y2) = (np.max(x), np.max(y)) #Find the bottom right corner cropped_image = gray[x1:x2+1, y1:y2+1] #Crop the image using the co-ordinates plt.imshow(cv2.cvtColor(cropped_image, cv2.COLOR_BGR2RGB)) #show the cropped image plt.show() reader = easyocr.Reader(['en']) #create an easyocr reader object with english as the language result = reader.readtext(cropped_image) #read text from the cropped image print(result)