mirror of
https://github.com/StefBuwalda/ProjectIOT.git
synced 2025-10-30 03:09:58 +00:00
58 lines
1.7 KiB
Python
58 lines
1.7 KiB
Python
import io
|
|
from application import car_model, plate_model, ocr_reader
|
|
from PIL import Image
|
|
import numpy as np
|
|
|
|
|
|
async def process_image(image: bytes) -> str:
|
|
print("Saving file to memory")
|
|
image_file = io.BytesIO(image)
|
|
|
|
img = Image.open(image_file)
|
|
img.save("received_image.jpg")
|
|
|
|
results = car_model.predict(source=img)
|
|
|
|
cars: list[tuple[int, tuple[int, int, int, int]]] = []
|
|
|
|
# Filter out the cars and calculate box size
|
|
for r in results:
|
|
if r.boxes:
|
|
for box in r.boxes:
|
|
cls_name = r.names[int(box.cls[0])]
|
|
if cls_name in ["car", "truck"]:
|
|
x1, y1, x2, y2 = map(int, box.xyxy[0])
|
|
size = (x2 - x1) ** 2 + (y2 - y1) ** 2
|
|
cars.append((size, (x1, y1, x2, y2)))
|
|
else:
|
|
return ""
|
|
|
|
if cars == []:
|
|
return ""
|
|
# Get the biggest car box
|
|
if not cars:
|
|
return ""
|
|
size, corners = max(cars, key=lambda x: x[0])
|
|
|
|
# Crop biggest car
|
|
cropped_img = img.crop(corners)
|
|
cropped_img.save("car_crop_pillow.jpg")
|
|
|
|
# Search for license plates in car box and OCR all
|
|
results = plate_model.predict(source=cropped_img)
|
|
for r in results:
|
|
if r.boxes:
|
|
for box in r.boxes:
|
|
cls_name = r.names[int(box.cls[0])]
|
|
if cls_name == "License_Plate":
|
|
x1, y1, x2, y2 = map(int, box.xyxy[0])
|
|
lp_img = cropped_img.crop((x1, y1, x2, y2))
|
|
lp_img.save("license_plate.jpg")
|
|
lp_np = np.array(object=lp_img)
|
|
result = ocr_reader.readtext(image=lp_np)
|
|
print(result)
|
|
else:
|
|
return ""
|
|
|
|
return str(result[0][1]) # type: ignore
|