mirror of
https://github.com/2OOP/pism.git
synced 2026-02-04 10:54:51 +00:00
Server update with new dev changes (#305)
* merge widgets with development * readd previous game thread code * Revert "readd previous game thread code" This reverts commitd24feef73e. * Revert "Merge remote-tracking branch 'origin/Development' into Development" This reverts commit59d46cb73c, reversing changes made to38681c5db0. * Revert "merge widgets with development" This reverts commit38681c5db0. * Merge 292 into development (#293) Applied template method pattern to abstract player * Added documentation to player classes and improved method names (#295) * mcts v1 * bitboard optimization * bitboard fix & mcts v2 & mcts v3. v3 still in progress and v4 coming soon * main --------- Co-authored-by: ramollia <> Co-authored-by: Stef <stbuwalda@gmail.com> Co-authored-by: Stef <48526421+StefBuwalda@users.noreply.github.com>
This commit is contained in:
committed by
GitHub
parent
230f7480e4
commit
c64a2e2c65
193
game/src/main/java/org/toop/game/players/ai/MCTSAI.java
Normal file
193
game/src/main/java/org/toop/game/players/ai/MCTSAI.java
Normal file
@@ -0,0 +1,193 @@
|
||||
package org.toop.game.players.ai;
|
||||
|
||||
import org.toop.framework.gameFramework.GameState;
|
||||
import org.toop.framework.gameFramework.model.game.PlayResult;
|
||||
import org.toop.framework.gameFramework.model.game.TurnBasedGame;
|
||||
import org.toop.framework.gameFramework.model.player.AbstractAI;
|
||||
|
||||
import java.util.Random;
|
||||
|
||||
public class MCTSAI extends AbstractAI {
|
||||
private static class Node {
|
||||
public TurnBasedGame state;
|
||||
public long move;
|
||||
|
||||
public Node parent;
|
||||
|
||||
public int expanded;
|
||||
public Node[] children;
|
||||
|
||||
public int visits;
|
||||
public float value;
|
||||
|
||||
public Node(TurnBasedGame state, long move, Node parent) {
|
||||
this.state = state;
|
||||
this.move = move;
|
||||
|
||||
this.parent = parent;
|
||||
|
||||
this.expanded = 0;
|
||||
this.children = new Node[Long.bitCount(state.getLegalMoves())];
|
||||
|
||||
this.visits = 0;
|
||||
this.value = 0.0f;
|
||||
}
|
||||
|
||||
public Node(TurnBasedGame state) {
|
||||
this(state, 0L, null);
|
||||
}
|
||||
|
||||
public boolean isFullyExpanded() {
|
||||
return expanded >= children.length;
|
||||
}
|
||||
|
||||
float calculateUCT() {
|
||||
float exploitation = visits <= 0? 0 : value / visits;
|
||||
float exploration = 1.41f * (float)(Math.sqrt(Math.log(visits) / visits));
|
||||
|
||||
return exploitation + exploration;
|
||||
}
|
||||
|
||||
public Node bestUCTChild() {
|
||||
int bestChildIndex = -1;
|
||||
float bestScore = Float.NEGATIVE_INFINITY;
|
||||
|
||||
for (int i = 0; i < expanded; i++) {
|
||||
final float score = calculateUCT();
|
||||
|
||||
if (score > bestScore) {
|
||||
bestChildIndex = i;
|
||||
bestScore = score;
|
||||
}
|
||||
}
|
||||
|
||||
return bestChildIndex >= 0? children[bestChildIndex] : this;
|
||||
}
|
||||
}
|
||||
|
||||
private final int milliseconds;
|
||||
|
||||
public MCTSAI(int milliseconds) {
|
||||
this.milliseconds = milliseconds;
|
||||
}
|
||||
|
||||
public MCTSAI(MCTSAI other) {
|
||||
this.milliseconds = other.milliseconds;
|
||||
}
|
||||
|
||||
@Override
|
||||
public MCTSAI deepCopy() {
|
||||
return new MCTSAI(this);
|
||||
}
|
||||
|
||||
@Override
|
||||
public long getMove(TurnBasedGame game) {
|
||||
Node root = new Node(game.deepCopy());
|
||||
|
||||
long endTime = System.currentTimeMillis() + milliseconds;
|
||||
|
||||
while (System.currentTimeMillis() <= endTime) {
|
||||
Node node = selection(root);
|
||||
long legalMoves = node.state.getLegalMoves();
|
||||
|
||||
if (legalMoves != 0) {
|
||||
node = expansion(node, legalMoves);
|
||||
}
|
||||
|
||||
float result = 0.0f;
|
||||
|
||||
if (node.state.getLegalMoves() != 0) {
|
||||
result = simulation(node.state, game.getCurrentTurn());
|
||||
}
|
||||
|
||||
backPropagation(node, result);
|
||||
}
|
||||
|
||||
int mostVisitedIndex = -1;
|
||||
int mostVisits = -1;
|
||||
|
||||
for (int i = 0; i < root.expanded; i++) {
|
||||
if (root.children[i].visits > mostVisits) {
|
||||
mostVisitedIndex = i;
|
||||
mostVisits = root.children[i].visits;
|
||||
}
|
||||
}
|
||||
|
||||
return mostVisitedIndex != -1? root.children[mostVisitedIndex].move : randomSetBit(game.getLegalMoves());
|
||||
}
|
||||
|
||||
private Node selection(Node node) {
|
||||
while (node.state.getLegalMoves() != 0L && node.isFullyExpanded()) {
|
||||
node = node.bestUCTChild();
|
||||
}
|
||||
|
||||
return node;
|
||||
}
|
||||
|
||||
private Node expansion(Node node, long legalMoves) {
|
||||
for (int i = 0; i < node.expanded; i++) {
|
||||
legalMoves &= ~node.children[i].move;
|
||||
}
|
||||
|
||||
if (legalMoves == 0L) {
|
||||
return node;
|
||||
}
|
||||
|
||||
long move = randomSetBit(legalMoves);
|
||||
|
||||
TurnBasedGame copy = node.state.deepCopy();
|
||||
copy.play(move);
|
||||
|
||||
Node newlyExpanded = new Node(copy, move, node);
|
||||
|
||||
node.children[node.expanded] = newlyExpanded;
|
||||
node.expanded++;
|
||||
|
||||
return newlyExpanded;
|
||||
}
|
||||
|
||||
private float simulation(TurnBasedGame state, int playerIndex) {
|
||||
TurnBasedGame copy = state.deepCopy();
|
||||
long legalMoves = copy.getLegalMoves();
|
||||
PlayResult result = null;
|
||||
|
||||
while (legalMoves != 0) {
|
||||
result = copy.play(randomSetBit(legalMoves));
|
||||
legalMoves = copy.getLegalMoves();
|
||||
}
|
||||
|
||||
if (result.state() == GameState.WIN) {
|
||||
if (result.player() == playerIndex) {
|
||||
return 1.0f;
|
||||
}
|
||||
|
||||
return -1.0f;
|
||||
}
|
||||
|
||||
return -0.2f;
|
||||
}
|
||||
|
||||
private void backPropagation(Node node, float value) {
|
||||
while (node != null) {
|
||||
node.visits++;
|
||||
node.value += value;
|
||||
node = node.parent;
|
||||
}
|
||||
}
|
||||
|
||||
public static long randomSetBit(long value) {
|
||||
Random random = new Random();
|
||||
|
||||
int count = Long.bitCount(value);
|
||||
int target = random.nextInt(count);
|
||||
|
||||
while (true) {
|
||||
int bit = Long.numberOfTrailingZeros(value);
|
||||
if (target == 0) {
|
||||
return 1L << bit;
|
||||
}
|
||||
value &= value - 1;
|
||||
target--;
|
||||
}
|
||||
}
|
||||
}
|
||||
195
game/src/main/java/org/toop/game/players/ai/MCTSAI2.java
Normal file
195
game/src/main/java/org/toop/game/players/ai/MCTSAI2.java
Normal file
@@ -0,0 +1,195 @@
|
||||
package org.toop.game.players.ai;
|
||||
|
||||
import org.toop.framework.gameFramework.model.game.TurnBasedGame;
|
||||
import org.toop.framework.gameFramework.model.player.AbstractAI;
|
||||
|
||||
import java.util.Random;
|
||||
|
||||
public class MCTSAI2 extends AbstractAI {
|
||||
private static class Node {
|
||||
public TurnBasedGame state;
|
||||
|
||||
public long move;
|
||||
public long unexpandedMoves;
|
||||
|
||||
public Node parent;
|
||||
|
||||
public Node[] children;
|
||||
public int expanded;
|
||||
|
||||
public float value;
|
||||
public int visits;
|
||||
|
||||
public Node(TurnBasedGame state, Node parent, long move) {
|
||||
final long legalMoves = state.getLegalMoves();
|
||||
|
||||
this.state = state;
|
||||
|
||||
this.move = move;
|
||||
this.unexpandedMoves = legalMoves;
|
||||
|
||||
this.parent = parent;
|
||||
|
||||
this.children = new Node[Long.bitCount(legalMoves)];
|
||||
this.expanded = 0;
|
||||
|
||||
this.value = 0.0f;
|
||||
this.visits = 0;
|
||||
}
|
||||
|
||||
public Node(TurnBasedGame state) {
|
||||
this(state, null, 0L);
|
||||
}
|
||||
|
||||
public boolean isFullyExpanded() {
|
||||
return expanded == children.length;
|
||||
}
|
||||
|
||||
public float calculateUCT(int parentVisits) {
|
||||
final float exploitation = value / visits;
|
||||
final float exploration = 1.41f * (float)(Math.sqrt(Math.log(parentVisits) / visits));
|
||||
|
||||
return exploitation + exploration;
|
||||
}
|
||||
|
||||
public Node bestUCTChild() {
|
||||
Node highestUCTChild = null;
|
||||
float highestUCT = Float.NEGATIVE_INFINITY;
|
||||
|
||||
for (int i = 0; i < expanded; i++) {
|
||||
final float childUCT = children[i].calculateUCT(visits);
|
||||
|
||||
if (childUCT > highestUCT) {
|
||||
highestUCTChild = children[i];
|
||||
highestUCT = childUCT;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
return highestUCTChild;
|
||||
}
|
||||
}
|
||||
|
||||
private final Random random;
|
||||
private final int milliseconds;
|
||||
|
||||
public MCTSAI2(int milliseconds) {
|
||||
this.random = new Random();
|
||||
this.milliseconds = milliseconds;
|
||||
}
|
||||
|
||||
public MCTSAI2(MCTSAI2 other) {
|
||||
this.random = other.random;
|
||||
this.milliseconds = other.milliseconds;
|
||||
}
|
||||
|
||||
@Override
|
||||
public MCTSAI2 deepCopy() {
|
||||
return new MCTSAI2(this);
|
||||
}
|
||||
|
||||
@Override
|
||||
public long getMove(TurnBasedGame game) {
|
||||
final Node root = new Node(game, null, 0L);
|
||||
|
||||
final long endTime = System.nanoTime() + milliseconds * 1_000_000L;
|
||||
|
||||
while (System.nanoTime() < endTime) {
|
||||
Node leaf = selection(root);
|
||||
leaf = expansion(leaf);
|
||||
final float value = simulation(leaf);
|
||||
backPropagation(leaf, value);
|
||||
}
|
||||
|
||||
final Node mostVisitedChild = mostVisitedChild(root);
|
||||
|
||||
return mostVisitedChild != null? mostVisitedChild.move : 0L;
|
||||
}
|
||||
|
||||
private Node mostVisitedChild(Node root) {
|
||||
Node mostVisitedChild = null;
|
||||
int mostVisited = -1;
|
||||
|
||||
for (int i = 0; i < root.expanded; i++) {
|
||||
if (root.children[i].visits > mostVisited) {
|
||||
mostVisitedChild = root.children[i];
|
||||
mostVisited = root.children[i].visits;
|
||||
}
|
||||
}
|
||||
|
||||
return mostVisitedChild;
|
||||
}
|
||||
|
||||
private Node selection(Node root) {
|
||||
while (root.isFullyExpanded() && !root.state.isTerminal()) {
|
||||
root = root.bestUCTChild();
|
||||
}
|
||||
|
||||
return root;
|
||||
}
|
||||
|
||||
private Node expansion(Node leaf) {
|
||||
if (leaf.unexpandedMoves == 0L) {
|
||||
return leaf;
|
||||
}
|
||||
|
||||
final long unexpandedMove = leaf.unexpandedMoves & -leaf.unexpandedMoves;
|
||||
|
||||
final TurnBasedGame copiedState = leaf.state.deepCopy();
|
||||
copiedState.play(unexpandedMove);
|
||||
|
||||
final Node expandedChild = new Node(copiedState, leaf, unexpandedMove);
|
||||
|
||||
leaf.children[leaf.expanded] = expandedChild;
|
||||
leaf.expanded++;
|
||||
|
||||
leaf.unexpandedMoves &= ~unexpandedMove;
|
||||
|
||||
return expandedChild;
|
||||
}
|
||||
|
||||
private float simulation(Node leaf) {
|
||||
final TurnBasedGame copiedState = leaf.state.deepCopy();
|
||||
final int playerIndex = 1 - copiedState.getCurrentTurn();
|
||||
|
||||
while (!copiedState.isTerminal()) {
|
||||
final long legalMoves = copiedState.getLegalMoves();
|
||||
final long randomMove = randomSetBit(legalMoves);
|
||||
|
||||
copiedState.play(randomMove);
|
||||
}
|
||||
|
||||
if (copiedState.getWinner() == playerIndex) {
|
||||
return 1.0f;
|
||||
} else if (copiedState.getWinner() >= 0) {
|
||||
return -1.0f;
|
||||
}
|
||||
|
||||
return 0.0f;
|
||||
}
|
||||
|
||||
private void backPropagation(Node leaf, float value) {
|
||||
while (leaf != null) {
|
||||
leaf.value += value;
|
||||
leaf.visits++;
|
||||
|
||||
value = -value;
|
||||
leaf = leaf.parent;
|
||||
}
|
||||
}
|
||||
|
||||
private long randomSetBit(long value) {
|
||||
if (0L == value) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
final int bitCount = Long.bitCount(value);
|
||||
final int randomBitCount = random.nextInt(bitCount);
|
||||
|
||||
for (int i = 0; i < randomBitCount; i++) {
|
||||
value &= value - 1;
|
||||
}
|
||||
|
||||
return value & -value;
|
||||
}
|
||||
}
|
||||
258
game/src/main/java/org/toop/game/players/ai/MCTSAI3.java
Normal file
258
game/src/main/java/org/toop/game/players/ai/MCTSAI3.java
Normal file
@@ -0,0 +1,258 @@
|
||||
package org.toop.game.players.ai;
|
||||
|
||||
import org.toop.framework.gameFramework.model.game.TurnBasedGame;
|
||||
import org.toop.framework.gameFramework.model.player.AbstractAI;
|
||||
|
||||
import java.util.Random;
|
||||
|
||||
public class MCTSAI3 extends AbstractAI {
|
||||
private static class Node {
|
||||
public TurnBasedGame state;
|
||||
|
||||
public long move;
|
||||
public long unexpandedMoves;
|
||||
|
||||
public Node parent;
|
||||
|
||||
public Node[] children;
|
||||
public int expanded;
|
||||
|
||||
public float value;
|
||||
public int visits;
|
||||
|
||||
public Node(TurnBasedGame state, Node parent, long move) {
|
||||
final long legalMoves = state.getLegalMoves();
|
||||
|
||||
this.state = state;
|
||||
|
||||
this.move = move;
|
||||
this.unexpandedMoves = legalMoves;
|
||||
|
||||
this.parent = parent;
|
||||
|
||||
this.children = new Node[Long.bitCount(legalMoves)];
|
||||
this.expanded = 0;
|
||||
|
||||
this.value = 0.0f;
|
||||
this.visits = 0;
|
||||
}
|
||||
|
||||
public Node(TurnBasedGame state) {
|
||||
this(state, null, 0L);
|
||||
}
|
||||
|
||||
public boolean isFullyExpanded() {
|
||||
return expanded == children.length;
|
||||
}
|
||||
|
||||
public float calculateUCT(int parentVisits) {
|
||||
final float exploitation = value / visits;
|
||||
final float exploration = 1.41f * (float)(Math.sqrt(Math.log(parentVisits) / visits));
|
||||
|
||||
return exploitation + exploration;
|
||||
}
|
||||
|
||||
public Node bestUCTChild() {
|
||||
Node highestUCTChild = null;
|
||||
float highestUCT = Float.NEGATIVE_INFINITY;
|
||||
|
||||
for (int i = 0; i < expanded; i++) {
|
||||
final float childUCT = children[i].calculateUCT(visits);
|
||||
|
||||
if (childUCT > highestUCT) {
|
||||
highestUCTChild = children[i];
|
||||
highestUCT = childUCT;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
return highestUCTChild;
|
||||
}
|
||||
}
|
||||
|
||||
private final Random random;
|
||||
|
||||
private Node root;
|
||||
private final int milliseconds;
|
||||
|
||||
public MCTSAI3(int milliseconds) {
|
||||
this.random = new Random();
|
||||
|
||||
this.root = null;
|
||||
this.milliseconds = milliseconds;
|
||||
}
|
||||
|
||||
public MCTSAI3(MCTSAI3 other) {
|
||||
this.random = other.random;
|
||||
|
||||
this.root = other.root;
|
||||
this.milliseconds = other.milliseconds;
|
||||
}
|
||||
|
||||
@Override
|
||||
public MCTSAI3 deepCopy() {
|
||||
return new MCTSAI3(this);
|
||||
}
|
||||
|
||||
@Override
|
||||
public long getMove(TurnBasedGame game) {
|
||||
detectRoot(game);
|
||||
|
||||
final long endTime = System.nanoTime() + milliseconds * 1_000_000L;
|
||||
|
||||
while (System.nanoTime() < endTime) {
|
||||
Node leaf = selection(root);
|
||||
leaf = expansion(leaf);
|
||||
final float value = simulation(leaf);
|
||||
backPropagation(leaf, value);
|
||||
}
|
||||
|
||||
final Node mostVisitedChild = mostVisitedChild(root);
|
||||
final long move = mostVisitedChild != null? mostVisitedChild.move : 0L;
|
||||
|
||||
newRoot(move);
|
||||
|
||||
return move;
|
||||
}
|
||||
|
||||
private Node mostVisitedChild(Node root) {
|
||||
Node mostVisitedChild = null;
|
||||
int mostVisited = -1;
|
||||
|
||||
for (int i = 0; i < root.expanded; i++) {
|
||||
if (root.children[i].visits > mostVisited) {
|
||||
mostVisitedChild = root.children[i];
|
||||
mostVisited = root.children[i].visits;
|
||||
}
|
||||
}
|
||||
|
||||
return mostVisitedChild;
|
||||
}
|
||||
|
||||
private void detectRoot(TurnBasedGame game) {
|
||||
if (root == null) {
|
||||
root = new Node(game.deepCopy());
|
||||
return;
|
||||
}
|
||||
|
||||
final long[] currentBoards = game.getBoard();
|
||||
final long[] rootBoards = root.state.getBoard();
|
||||
|
||||
boolean detected = true;
|
||||
|
||||
for (int i = 0; i < rootBoards.length; i++) {
|
||||
if (rootBoards[i] != currentBoards[i]) {
|
||||
detected = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (detected) {
|
||||
return;
|
||||
}
|
||||
|
||||
for (int i = 0; i < root.expanded; i++) {
|
||||
final Node child = root.children[i];
|
||||
|
||||
final long[] childBoards = child.state.getBoard();
|
||||
|
||||
detected = true;
|
||||
|
||||
for (int j = 0; j < childBoards.length; j++) {
|
||||
if (childBoards[j] != currentBoards[j]) {
|
||||
detected = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (detected) {
|
||||
root = child;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
root = new Node(game.deepCopy());
|
||||
}
|
||||
|
||||
private void newRoot(long move) {
|
||||
for (final Node child : root.children) {
|
||||
if (child.move == move) {
|
||||
root = child;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private Node selection(Node root) {
|
||||
while (root.isFullyExpanded() && !root.state.isTerminal()) {
|
||||
root = root.bestUCTChild();
|
||||
}
|
||||
|
||||
return root;
|
||||
}
|
||||
|
||||
private Node expansion(Node leaf) {
|
||||
if (leaf.unexpandedMoves == 0L) {
|
||||
return leaf;
|
||||
}
|
||||
|
||||
final long unexpandedMove = leaf.unexpandedMoves & -leaf.unexpandedMoves;
|
||||
|
||||
final TurnBasedGame copiedState = leaf.state.deepCopy();
|
||||
copiedState.play(unexpandedMove);
|
||||
|
||||
final Node expandedChild = new Node(copiedState, leaf, unexpandedMove);
|
||||
|
||||
leaf.children[leaf.expanded] = expandedChild;
|
||||
leaf.expanded++;
|
||||
|
||||
leaf.unexpandedMoves &= ~unexpandedMove;
|
||||
|
||||
return expandedChild;
|
||||
}
|
||||
|
||||
private float simulation(Node leaf) {
|
||||
final TurnBasedGame copiedState = leaf.state.deepCopy();
|
||||
final int playerIndex = 1 - copiedState.getCurrentTurn();
|
||||
|
||||
while (!copiedState.isTerminal()) {
|
||||
final long legalMoves = copiedState.getLegalMoves();
|
||||
final long randomMove = randomSetBit(legalMoves);
|
||||
|
||||
copiedState.play(randomMove);
|
||||
}
|
||||
|
||||
if (copiedState.getWinner() == playerIndex) {
|
||||
return 1.0f;
|
||||
} else if (copiedState.getWinner() >= 0) {
|
||||
return -1.0f;
|
||||
}
|
||||
|
||||
return 0.0f;
|
||||
}
|
||||
|
||||
private void backPropagation(Node leaf, float value) {
|
||||
while (leaf != null) {
|
||||
leaf.value += value;
|
||||
leaf.visits++;
|
||||
|
||||
value = -value;
|
||||
leaf = leaf.parent;
|
||||
}
|
||||
}
|
||||
|
||||
private long randomSetBit(long value) {
|
||||
if (0L == value) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
final int bitCount = Long.bitCount(value);
|
||||
final int randomBitCount = random.nextInt(bitCount);
|
||||
|
||||
for (int i = 0; i < randomBitCount; i++) {
|
||||
value &= value - 1;
|
||||
}
|
||||
|
||||
return value & -value;
|
||||
}
|
||||
}
|
||||
165
game/src/main/java/org/toop/game/players/ai/MiniMaxAI.java
Normal file
165
game/src/main/java/org/toop/game/players/ai/MiniMaxAI.java
Normal file
@@ -0,0 +1,165 @@
|
||||
package org.toop.game.players.ai;
|
||||
|
||||
import org.toop.framework.gameFramework.GameState;
|
||||
import org.toop.framework.gameFramework.model.game.PlayResult;
|
||||
import org.toop.framework.gameFramework.model.game.TurnBasedGame;
|
||||
import org.toop.framework.gameFramework.model.player.AbstractAI;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
import java.util.Random;
|
||||
|
||||
public class MiniMaxAI extends AbstractAI {
|
||||
|
||||
private final int maxDepth;
|
||||
private final Random random = new Random();
|
||||
|
||||
public MiniMaxAI(int depth) {
|
||||
this.maxDepth = depth;
|
||||
}
|
||||
|
||||
public MiniMaxAI(MiniMaxAI other) {
|
||||
this.maxDepth = other.maxDepth;
|
||||
}
|
||||
|
||||
@Override
|
||||
public MiniMaxAI deepCopy() {
|
||||
return new MiniMaxAI(this);
|
||||
}
|
||||
|
||||
@Override
|
||||
public long getMove(TurnBasedGame game) {
|
||||
long legalMoves = game.getLegalMoves();
|
||||
if (legalMoves == 0) return 0;
|
||||
|
||||
List<Long> bestMoves = new ArrayList<>();
|
||||
int bestScore = Integer.MIN_VALUE;
|
||||
int aiPlayer = game.getCurrentTurn();
|
||||
|
||||
long movesLoop = legalMoves;
|
||||
while (movesLoop != 0) {
|
||||
long move = 1L << Long.numberOfTrailingZeros(movesLoop);
|
||||
TurnBasedGame copy = game.deepCopy();
|
||||
PlayResult result = copy.play(move);
|
||||
|
||||
int score;
|
||||
switch (result.state()) {
|
||||
case WIN -> score = (result.player() == aiPlayer ? maxDepth : -maxDepth);
|
||||
case DRAW -> score = 0;
|
||||
default -> score = getMoveScore(copy, maxDepth - 1, false, aiPlayer, Integer.MIN_VALUE, Integer.MAX_VALUE);
|
||||
}
|
||||
|
||||
if (score > bestScore) {
|
||||
bestScore = score;
|
||||
bestMoves.clear();
|
||||
bestMoves.add(move);
|
||||
} else if (score == bestScore) {
|
||||
bestMoves.add(move);
|
||||
}
|
||||
|
||||
movesLoop &= movesLoop - 1;
|
||||
}
|
||||
|
||||
long chosenMove = bestMoves.get(random.nextInt(bestMoves.size()));
|
||||
return chosenMove;
|
||||
}
|
||||
|
||||
/**
|
||||
* Recursive minimax with alpha-beta pruning and heuristic evaluation.
|
||||
*
|
||||
* @param game Current game state
|
||||
* @param depth Remaining depth
|
||||
* @param maximizing True if AI is maximizing, false if opponent
|
||||
* @param aiPlayer AI's player index
|
||||
* @param alpha Alpha value
|
||||
* @param beta Beta value
|
||||
* @return score of the position
|
||||
*/
|
||||
private int getMoveScore(TurnBasedGame game, int depth, boolean maximizing, int aiPlayer, int alpha, int beta) {
|
||||
long legalMoves = game.getLegalMoves();
|
||||
|
||||
// Terminal state
|
||||
PlayResult lastResult = null;
|
||||
if (legalMoves == 0) {
|
||||
lastResult = new PlayResult(GameState.DRAW, -1);
|
||||
}
|
||||
|
||||
// If the game is over or depth limit reached, evaluate
|
||||
if (depth <= 0 || legalMoves == 0) {
|
||||
if (lastResult != null) return 0;
|
||||
return evaluateBoard(game, aiPlayer);
|
||||
}
|
||||
|
||||
int bestScore = maximizing ? Integer.MIN_VALUE : Integer.MAX_VALUE;
|
||||
long movesLoop = legalMoves;
|
||||
|
||||
while (movesLoop != 0) {
|
||||
long move = 1L << Long.numberOfTrailingZeros(movesLoop);
|
||||
TurnBasedGame copy = game.deepCopy();
|
||||
PlayResult result = copy.play(move);
|
||||
|
||||
int score;
|
||||
switch (result.state()) {
|
||||
case WIN -> score = (result.player() == aiPlayer ? depth : -depth);
|
||||
case DRAW -> score = 0;
|
||||
default -> score = getMoveScore(copy, depth - 1, !maximizing, aiPlayer, alpha, beta);
|
||||
}
|
||||
|
||||
if (maximizing) {
|
||||
bestScore = Math.max(bestScore, score);
|
||||
alpha = Math.max(alpha, bestScore);
|
||||
} else {
|
||||
bestScore = Math.min(bestScore, score);
|
||||
beta = Math.min(beta, bestScore);
|
||||
}
|
||||
|
||||
// Alpha-beta pruning
|
||||
if (beta <= alpha) break;
|
||||
|
||||
movesLoop &= movesLoop - 1;
|
||||
}
|
||||
|
||||
return bestScore;
|
||||
}
|
||||
|
||||
/**
|
||||
* Simple heuristic evaluation for Reversi-like games.
|
||||
* Positive = good for AI, Negative = good for opponent.
|
||||
*
|
||||
* @param game OnlineTurnBasedGame state
|
||||
* @param aiPlayer AI's player index
|
||||
* @return heuristic score
|
||||
*/
|
||||
private int evaluateBoard(TurnBasedGame game, int aiPlayer) {
|
||||
long[] board = game.getBoard();
|
||||
int aiCount = 0;
|
||||
int opponentCount = 0;
|
||||
|
||||
// Count pieces for AI vs opponent
|
||||
for (int i = 0; i < board.length; i++) {
|
||||
long bits = board[i];
|
||||
for (int j = 0; j < 64; j++) {
|
||||
if ((bits & (1L << j)) != 0) {
|
||||
// Assume player 0 occupies even indices, player 1 occupies odd
|
||||
if ((i * 64 + j) % game.getPlayerCount() == aiPlayer) aiCount++;
|
||||
else opponentCount++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Mobility (number of legal moves)
|
||||
int mobility = Long.bitCount(game.getLegalMoves());
|
||||
|
||||
// Corner control (top-left, top-right, bottom-left, bottom-right)
|
||||
int corners = 0;
|
||||
long[] cornerMasks = {1L << 0, 1L << 7, 1L << 56, 1L << 63};
|
||||
for (long mask : cornerMasks) {
|
||||
for (long b : board) {
|
||||
if ((b & mask) != 0) corners += 1;
|
||||
}
|
||||
}
|
||||
|
||||
// Weighted sum
|
||||
return (aiCount - opponentCount) + 2 * mobility + 5 * corners;
|
||||
}
|
||||
}
|
||||
38
game/src/main/java/org/toop/game/players/ai/RandomAI.java
Normal file
38
game/src/main/java/org/toop/game/players/ai/RandomAI.java
Normal file
@@ -0,0 +1,38 @@
|
||||
package org.toop.game.players.ai;
|
||||
|
||||
import org.toop.framework.gameFramework.model.game.TurnBasedGame;
|
||||
import org.toop.framework.gameFramework.model.player.AbstractAI;
|
||||
|
||||
import java.util.Random;
|
||||
|
||||
|
||||
public class RandomAI extends AbstractAI {
|
||||
|
||||
public RandomAI() {
|
||||
super();
|
||||
}
|
||||
|
||||
@Override
|
||||
public RandomAI deepCopy() {
|
||||
return new RandomAI();
|
||||
}
|
||||
|
||||
@Override
|
||||
public long getMove(TurnBasedGame game) {
|
||||
long legalMoves = game.getLegalMoves();
|
||||
int move = new Random().nextInt(Long.bitCount(legalMoves));
|
||||
return nthBitIndex(legalMoves, move);
|
||||
}
|
||||
|
||||
public static long nthBitIndex(long bb, int n) {
|
||||
while (bb != 0) {
|
||||
int tz = Long.numberOfTrailingZeros(bb);
|
||||
if (n == 0) {
|
||||
return 1L << tz;
|
||||
}
|
||||
bb &= bb - 1; // clear the least significant 1
|
||||
n--;
|
||||
}
|
||||
return 0L; // not enough 1s
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user