4 Commits

Author SHA1 Message Date
Ticho Hidding
03dc6130e2 merge commit 2025-12-08 14:55:32 +01:00
Ticho Hidding
ca7f9e8ecf Merge branch 'Development' into ReversiML
# Conflicts:
#	app/src/main/java/org/toop/Main.java
#	app/src/main/java/org/toop/app/game/ReversiGame.java
#	game/pom.xml
#	game/src/main/java/org/toop/game/reversi/Reversi.java
#	game/src/main/java/org/toop/game/reversi/ReversiAI.java
#	game/src/test/java/org/toop/game/tictactoe/ReversiTest.java
2025-12-08 11:58:32 +01:00
Ticho Hidding
f6d90ed439 added some useful testing methods.
made training slightly better.
2025-12-08 11:36:31 +01:00
Ticho Hidding
7e913ff50f Machine learning for reversi.
performance improvements for reversi.getlegalmoves
2025-12-02 10:59:33 +01:00
9 changed files with 636 additions and 1 deletions

View File

@@ -15,6 +15,7 @@ import org.toop.framework.audio.*;
import org.toop.framework.audio.events.AudioEvents; import org.toop.framework.audio.events.AudioEvents;
import org.toop.framework.eventbus.EventFlow; import org.toop.framework.eventbus.EventFlow;
import org.toop.framework.eventbus.GlobalEventBus; import org.toop.framework.eventbus.GlobalEventBus;
import org.toop.game.machinelearning.NeuralNetwork;
import org.toop.framework.networking.NetworkingClientEventListener; import org.toop.framework.networking.NetworkingClientEventListener;
import org.toop.framework.networking.NetworkingClientManager; import org.toop.framework.networking.NetworkingClientManager;
import org.toop.framework.resource.ResourceLoader; import org.toop.framework.resource.ResourceLoader;
@@ -138,8 +139,14 @@ public final class App extends Application {
stage.show(); stage.show();
//startML();
} }
private void startML() {
NeuralNetwork nn = new NeuralNetwork();
nn.init();
}
private void setKeybinds(StackPane root) { private void setKeybinds(StackPane root) {
root.addEventHandler(KeyEvent.KEY_PRESSED,event -> { root.addEventHandler(KeyEvent.KEY_PRESSED,event -> {
if (event.getCode() == KeyCode.ESCAPE) { if (event.getCode() == KeyCode.ESCAPE) {

View File

@@ -146,7 +146,13 @@
<artifactId>error_prone_annotations</artifactId> <artifactId>error_prone_annotations</artifactId>
<version>2.42.0</version> <version>2.42.0</version>
</dependency> </dependency>
</dependencies> <dependency>
<groupId>org.deeplearning4j</groupId>
<artifactId>deeplearning4j-nn</artifactId>
<version>1.0.0-M2.1</version>
<scope>compile</scope>
</dependency>
</dependencies>
<build> <build>
<plugins> <plugins>

View File

@@ -105,6 +105,16 @@
<version>0.1</version> <version>0.1</version>
<scope>compile</scope> <scope>compile</scope>
</dependency> </dependency>
<dependency>
<groupId>org.deeplearning4j</groupId>
<artifactId>deeplearning4j-core</artifactId>
<version>1.0.0-M2.1</version>
</dependency>
<dependency>
<groupId>org.nd4j</groupId>
<artifactId>nd4j-native-platform</artifactId>
<version>1.0.0-M2.1</version>
</dependency>
</dependencies> </dependencies>

View File

@@ -0,0 +1,57 @@
package org.toop.game.games.reversi;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.util.ModelSerializer;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import org.toop.framework.gameFramework.model.player.AbstractAI;
import java.io.IOException;
import java.io.InputStream;
import static java.lang.Math.random;
public class ReversiAIML extends AbstractAI<ReversiR> {
MultiLayerNetwork model;
public ReversiAIML() {
InputStream is = getClass().getResourceAsStream("/reversi-model.zip");
try {
assert is != null;
model = ModelSerializer.restoreMultiLayerNetwork(is);
} catch (IOException e) {}
}
private int pickLegalMove(INDArray prediction, ReversiR reversi) {
double[] logits = prediction.toDoubleVector();
int[] legalMoves = reversi.getLegalMoves();
if (legalMoves.length == 0) return -1;
int bestMove = legalMoves[0];
double bestVal = logits[bestMove];
if (random() < 0.01){
return legalMoves[(int)(random()*legalMoves.length-.5)];
}
for (int move : legalMoves) {
if (logits[move] > bestVal) {
bestMove = move;
bestVal = logits[move];
}
}
return bestMove;
}
@Override
public int getMove(ReversiR game) {
int[] input = game.getBoard();
INDArray boardInput = Nd4j.create(new int[][] { input });
INDArray prediction = model.output(boardInput);
int move = pickLegalMove(prediction,game);
return move;
}
}

View File

@@ -0,0 +1,58 @@
package org.toop.game.games.reversi;
import org.toop.framework.gameFramework.model.player.AbstractAI;
import java.awt.*;
public class ReversiAISimple extends AbstractAI<ReversiR> {
private int getNumberOfOptions(ReversiR game, int move){
ReversiR copy = game.deepCopy();
copy.play(move);
return copy.getLegalMoves().length;
}
private int getScore(ReversiR game, int move){
return game.getFlipsForPotentialMove(new Point(move%game.getColumnSize(),move/game.getRowSize()),game.getCurrentTurn()).length;
}
@Override
public int getMove(ReversiR game) {
int[] moves = game.getLegalMoves();
int bestMove;
int bestMoveScore = moves[0];
int bestMoveOptions = moves[0];
int bestScore = -1;
int bestOptions = -1;
for (int move : moves){
int numOpt = getNumberOfOptions(game, move);
if (numOpt > bestOptions) {
bestOptions = numOpt;
bestMoveOptions = move;
}
int numSco = getScore(game, move);
if (numSco > bestScore) {
bestScore = numSco;
bestMoveScore = move;
}
if (numSco == bestScore || numOpt == bestOptions) {
if (Math.random() < 0.5) {
bestMoveOptions = move;
bestMoveScore = move;
}
}
//IO.println("Move: " + move.position() + ". Options: " + numOpt + ". Score: " + numSco);
}
if (bestScore > bestOptions) {
bestMove = bestMoveScore;
}
else{
bestMove = bestMoveOptions;
}
return bestMove;
}
}

View File

@@ -254,7 +254,24 @@ public final class ReversiR extends AbstractGame<ReversiR> {
}); });
return Arrays.stream(moves).mapToInt(Integer::intValue).toArray(); return Arrays.stream(moves).mapToInt(Integer::intValue).toArray();
} }
public int[] getMostRecentlyFlippedPieces() { public int[] getMostRecentlyFlippedPieces() {
return mostRecentlyFlippedPieces; return mostRecentlyFlippedPieces;
} }
public Score getScore() {
int[] board = getBoard();
int p1 = 0;
int p2 = 0;
for (int i = 0; i < this.getColumnSize() * this.getRowSize(); i++) {
if (board[i] == 1) {
p1 += 1;
}
if (board[i] == 2) {
p2 += 1;
}
}
return new Score(p1, p2);
}
} }

View File

@@ -0,0 +1,198 @@
package org.toop.game.machinelearning;
import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.layers.DenseLayer;
import org.deeplearning4j.nn.conf.layers.OutputLayer;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.nn.weights.WeightInit;
import org.deeplearning4j.util.ModelSerializer;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.dataset.DataSet;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.learning.config.Adam;
import org.nd4j.linalg.lossfunctions.LossFunctions;
import org.toop.framework.gameFramework.GameState;
import org.toop.framework.gameFramework.model.game.PlayResult;
import org.toop.framework.gameFramework.model.player.AbstractAI;
import org.toop.framework.gameFramework.model.player.Player;
import org.toop.game.games.reversi.ReversiAIR;
import org.toop.game.games.reversi.ReversiR;
import org.toop.game.games.reversi.ReversiAIML;
import org.toop.game.games.reversi.ReversiAISimple;
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import static java.lang.Math.abs;
import static java.lang.Math.random;
public class NeuralNetwork {
private MultiLayerConfiguration conf;
private MultiLayerNetwork model;
private AbstractAI<ReversiR> opponentAI;
private AbstractAI<ReversiR> opponentRand = new ReversiAIR();
private AbstractAI<ReversiR> opponentSimple = new ReversiAISimple();
private AbstractAI<ReversiR> opponentAIML = new ReversiAIML();
public NeuralNetwork() {}
public void init(){
conf = new NeuralNetConfiguration.Builder()
.updater(new Adam(0.001))
.weightInit(WeightInit.XAVIER) //todo understand
.list()
.layer(new DenseLayer.Builder()
.nIn(64)
.nOut(128)
.activation(Activation.RELU)
.build())
.layer(new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
.nIn(128)
.nOut(64)
.activation(Activation.SOFTMAX)
.build())
.build();
model = new MultiLayerNetwork(conf);
IO.println(model.params());
loadModel();
IO.println(model.params());
model.init();
IO.println(model.summary());
model.setLearningRate(0.0003);
trainingLoop();
saveModel();
}
public void saveModel(){
File modelFile = new File("reversi-model.zip");
try {
ModelSerializer.writeModel(model, modelFile, true);
}catch (Exception e){
e.printStackTrace();
}
}
public void loadModel(){
File modelFile = new File("reversi-model.zip");
try {
model = ModelSerializer.restoreMultiLayerNetwork(modelFile);
} catch (IOException e) {
e.printStackTrace();
}
}
public void trainingLoop(){
int totalGames = 5000;
double epsilon = 0.05;
long start = System.nanoTime();
for (int game = 0; game<totalGames; game++){
char modelPlayer = random()<0.5?'B':'W';
ReversiR reversi = new ReversiR(new Player[2]);
opponentAI = getOpponentAI();
List<StateAction> gameHistory = new ArrayList<>();
PlayResult state = new PlayResult(GameState.NORMAL,reversi.getCurrentTurn());
double reward = 0;
while (state.state() != GameState.DRAW && state.state() != GameState.WIN){
int curr = reversi.getCurrentTurn();
int move;
if (curr == modelPlayer) {
int[] input = reversi.getBoard();
if (Math.random() < epsilon) {
int[] moves = reversi.getLegalMoves();
move = moves[(int) (Math.random() * moves.length - .5f)];
} else {
INDArray boardInput = Nd4j.create(new int[][]{input});
INDArray prediction = model.output(boardInput);
int location = pickLegalMove(prediction, reversi);
gameHistory.add(new StateAction(input, location));
move = location;
}
}else{
move = opponentAI.getMove(reversi);
}
state = reversi.play(move);
}
//IO.println(model.params());
ReversiR.Score score = reversi.getScore();
int scoreDif = abs(score.player1Score() - score.player2Score());
if (score.player1Score() > score.player2Score()){
reward = 1 + ((scoreDif / 64.0) * 0.5);
}else if (score.player1Score() < score.player2Score()){
reward = -1 - ((scoreDif / 64.0) * 0.5);
}else{
reward = 0;
}
if (modelPlayer == 'W'){
reward = -reward;
}
for (StateAction step : gameHistory){
trainFromHistory(step, reward);
}
//IO.println("Wr: " + (double)p1wins/(game+1) + " draws: " + draws);
if(game % 100 == 0){
IO.println("Completed game " + game + " | Reward: " + reward);
//IO.println(Arrays.toString(reversi.getBoardDouble()));
}
}
long end = System.nanoTime();
IO.println((end-start));
}
private int pickLegalMove(INDArray prediction, ReversiR reversi){
double[] probs = prediction.toDoubleVector();
int[] legalMoves = reversi.getLegalMoves();
if (legalMoves.length == 0) return -1;
int bestMove = legalMoves[0];
double bestVal = probs[bestMove];
for (int move : legalMoves){
if (probs[move] > bestVal){
bestMove = move;
bestVal = probs[bestMove];
}
}
return bestMove;
}
private AbstractAI<ReversiR> getOpponentAI(){
return switch ((int) (Math.random() * 4)) {
case 0 -> opponentRand;
case 1 -> opponentSimple;
case 2 -> opponentAIML;
default -> opponentRand;
};
}
private void trainFromHistory(StateAction step, double reward){
double[] output = new double[64];
output[step.action] = reward;
DataSet ds = new DataSet(
Nd4j.create(new int[][] { step.state }),
Nd4j.create(new double[][] { output })
);
model.fit(ds);
}
}

View File

@@ -0,0 +1,10 @@
package org.toop.game.machinelearning;
public class StateAction {
int[] state;
int action;
public StateAction(int[] state, int action) {
this.state = state;
this.action = action;
}
}

View File

@@ -0,0 +1,272 @@
/*//todo fix this mess
package org.toop.game.tictactoe;
import java.util.*;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import org.toop.framework.gameFramework.model.player.AbstractAI;
import org.toop.framework.gameFramework.model.player.Player;
import org.toop.game.AI;
import org.toop.game.enumerators.GameState;
import org.toop.game.games.reversi.ReversiAIR;
import org.toop.game.games.reversi.ReversiR;
import org.toop.game.records.Move;
import org.toop.game.reversi.Reversi;
import org.toop.game.reversi.ReversiAI;
import org.toop.game.games.reversi.ReversiAIML;
import org.toop.game.games.reversi.ReversiAISimple;
import static org.junit.jupiter.api.Assertions.*;
class ReversiTest {
private ReversiR game;
private ReversiAIR ai;
private ReversiAIML aiml;
private ReversiAISimple aiSimple;
private AbstractAI<ReversiR> player1;
private AbstractAI<ReversiR> player2;
private Player[] players = new Player[2];
@BeforeEach
void setup() {
game = new ReversiR(players);
ai = new ReversiAIR();
aiml = new ReversiAIML();
aiSimple = new ReversiAISimple();
}
@Test
void testCorrectStartPiecesPlaced() {
assertNotNull(game);
assertEquals('W', game.getBoard()[27]);
assertEquals('B', game.getBoard()[28]);
assertEquals('B', game.getBoard()[35]);
assertEquals('W', game.getBoard()[36]);
}
@Test
void testGetLegalMovesAtStart() {
Move[] moves = game.getLegalMoves();
List<Move> expectedMoves = List.of(
new Move(19, 'B'),
new Move(26, 'B'),
new Move(37, 'B'),
new Move(44, 'B')
);
assertNotNull(moves);
assertTrue(moves.length > 0);
assertMovesMatchIgnoreOrder(expectedMoves, Arrays.asList(moves));
}
private void assertMovesMatchIgnoreOrder(List<Move> expected, List<Move> actual) {
assertEquals(expected.size(), actual.size());
for (int i = 0; i < expected.size(); i++) {
assertTrue(actual.contains(expected.get(i)));
assertTrue(expected.contains(actual.get(i)));
}
}
@Test
void testMakeValidMoveFlipsPieces() {
game.play(new Move(19, 'B'));
assertEquals('B', game.getBoard()[19]);
assertEquals('B', game.getBoard()[27], "Piece should have flipped to B");
}
@Test
void testMakeInvalidMoveDoesNothing() {
char[] before = game.getBoard().clone();
game.play(new Move(0, 'B'));
assertArrayEquals(before, game.getBoard(), "Board should not change on invalid move");
}
@Test
void testTurnSwitchesAfterValidMove() {
char current = game.getCurrentPlayer();
game.play(game.getLegalMoves()[0]);
assertNotEquals(current, game.getCurrentPlayer(), "Player turn should switch after a valid move");
}
@Test
void testCountScoreCorrectlyAtStart() {
long start = System.nanoTime();
Reversi.Score score = game.getScore();
assertEquals(2, score.player1Score()); // Black
assertEquals(2, score.player2Score()); // White
long end = System.nanoTime();
IO.println((end - start));
}
@Test
void zLegalMovesInCertainPosition() {
game.play(new Move(19, 'B'));
game.play(new Move(20, 'W'));
Move[] moves = game.getLegalMoves();
List<Move> expectedMoves = List.of(
new Move(13, 'B'),
new Move(21, 'B'),
new Move(29, 'B'),
new Move(37, 'B'),
new Move(45, 'B'));
assertNotNull(moves);
assertTrue(moves.length > 0);
IO.println(Arrays.toString(moves));
assertMovesMatchIgnoreOrder(expectedMoves, Arrays.asList(moves));
}
@Test
void testCountScoreCorrectlyAtEnd() {
for (int i = 0; i < 1; i++) {
game = new Reversi();
Move[] legalMoves = game.getLegalMoves();
while (legalMoves.length > 0) {
game.play(legalMoves[(int) (Math.random() * legalMoves.length)]);
legalMoves = game.getLegalMoves();
}
Reversi.Score score = game.getScore();
IO.println(score.player1Score());
IO.println(score.player2Score());
for (int r = 0; r < game.getRowSize(); r++) {
char[] row = Arrays.copyOfRange(game.getBoard(), r * game.getColumnSize(), (r + 1) * game.getColumnSize());
IO.println(Arrays.toString(row));
}
}
}
@Test
void testPlayerMustSkipTurnIfNoValidMoves() {
game.play(new Move(19, 'B'));
game.play(new Move(34, 'W'));
game.play(new Move(45, 'B'));
game.play(new Move(11, 'W'));
game.play(new Move(42, 'B'));
game.play(new Move(54, 'W'));
game.play(new Move(37, 'B'));
game.play(new Move(46, 'W'));
game.play(new Move(63, 'B'));
game.play(new Move(62, 'W'));
game.play(new Move(29, 'B'));
game.play(new Move(50, 'W'));
game.play(new Move(55, 'B'));
game.play(new Move(30, 'W'));
game.play(new Move(53, 'B'));
game.play(new Move(38, 'W'));
game.play(new Move(61, 'B'));
game.play(new Move(52, 'W'));
game.play(new Move(51, 'B'));
game.play(new Move(60, 'W'));
game.play(new Move(59, 'B'));
assertEquals('B', game.getCurrentPlayer());
game.play(ai.findBestMove(game, 5));
game.play(ai.findBestMove(game, 5));
}
@Test
void testGameShouldEndIfNoValidMoves() {
//European Grand Prix Ghent 2017: Replay Hassan - Verstuyft J. (3-17)
game.play(new Move(19, 'B'));
game.play(new Move(20, 'W'));
game.play(new Move(29, 'B'));
game.play(new Move(22, 'W'));
game.play(new Move(21, 'B'));
game.play(new Move(34, 'W'));
game.play(new Move(23, 'B'));
game.play(new Move(13, 'W'));
game.play(new Move(26, 'B'));
game.play(new Move(18, 'W'));
game.play(new Move(12, 'B'));
game.play(new Move(4, 'W'));
game.play(new Move(17, 'B'));
game.play(new Move(31, 'W'));
GameState stateTurn15 = game.play(new Move(39, 'B'));
assertEquals(GameState.NORMAL, stateTurn15);
GameState stateTurn16 = game.play(new Move(16, 'W'));
assertEquals(GameState.WIN, stateTurn16);
GameState stateTurn17 = game.play(new Move(5, 'B'));
assertNull(stateTurn17);
Reversi.Score score = game.getScore();
assertEquals(3, score.player1Score());
assertEquals(17, score.player2Score());
}
@Test
void testAISelectsLegalMove() {
Move move = ai.findBestMove(game, 4);
assertNotNull(move);
assertTrue(containsMove(game.getLegalMoves(), move), "AI should always choose a legal move");
}
private boolean containsMove(Move[] moves, Move move) {
for (Move m : moves) {
if (m.equals(move)) return true;
}
return false;
}
@Test
void testAis() {
player1 = aiml;
player2 = ai;
testAIvsAIML();
player2 = aiSimple;
testAIvsAIML();
player1 = ai;
testAIvsAIML();
player2 = aiml;
testAIvsAIML();
player1 = aiml;
testAIvsAIML();
player1 = aiSimple;
testAIvsAIML();
}
@Test
void testAIvsAIML() {
if(player1 == null || player2 == null) {
player1 = aiml;
player2 = ai;
}
int totalGames = 2000;
IO.println("Testing... " + player1.getClass().getSimpleName() + " vs " + player2.getClass().getSimpleName() + " for " + totalGames + " games");
int p1wins = 0;
int p2wins = 0;
int draws = 0;
List<Integer> moves = new ArrayList<>();
for (int i = 0; i < totalGames; i++) {
game = new ReversiR();
while (!game.isGameOver()) {
char curr = game.getCurrentPlayer();
Move move;
if (curr == 'B') {
move = player1.findBestMove(game, 5);
} else {
move = player2.findBestMove(game, 5);
}
if (i%500 == 0) moves.add(move.position());
game.play(move);
}
if (i%500 == 0) {
IO.println(moves);
moves.clear();
}
int winner = game.getWinner();
if (winner == 1) {
p1wins++;
} else if (winner == 2) {
p2wins++;
} else {
draws++;
}
}
IO.println("p1 winrate: " + p1wins + "/" + totalGames + " = " + (double) p1wins / totalGames + "\np2wins: " + p2wins + " draws: " + draws);
}
}
*/