8 Commits

Author SHA1 Message Date
Ticho Hidding
5501c3893f bitboard merge 2025-12-15 10:28:33 +01:00
Ticho Hidding
ffdec38e5d Merge branch 'Development' into ReversiML
# Conflicts:
#	game/src/main/java/org/toop/game/games/reversi/ReversiR.java
2025-12-13 15:04:40 +01:00
Stef
1ae79daef0 Added documentation to player classes and improved method names (#295) 2025-12-10 13:17:01 +01:00
Stef
cd8eb99559 Merge 292 into development (#293)
Applied template method pattern to abstract player
2025-12-10 12:39:40 +01:00
Ticho Hidding
03dc6130e2 merge commit 2025-12-08 14:55:32 +01:00
Ticho Hidding
ca7f9e8ecf Merge branch 'Development' into ReversiML
# Conflicts:
#	app/src/main/java/org/toop/Main.java
#	app/src/main/java/org/toop/app/game/ReversiGame.java
#	game/pom.xml
#	game/src/main/java/org/toop/game/reversi/Reversi.java
#	game/src/main/java/org/toop/game/reversi/ReversiAI.java
#	game/src/test/java/org/toop/game/tictactoe/ReversiTest.java
2025-12-08 11:58:32 +01:00
Ticho Hidding
f6d90ed439 added some useful testing methods.
made training slightly better.
2025-12-08 11:36:31 +01:00
Ticho Hidding
7e913ff50f Machine learning for reversi.
performance improvements for reversi.getlegalmoves
2025-12-02 10:59:33 +01:00
18 changed files with 849 additions and 119 deletions

View File

@@ -16,6 +16,7 @@ import org.toop.framework.audio.*;
import org.toop.framework.audio.events.AudioEvents; import org.toop.framework.audio.events.AudioEvents;
import org.toop.framework.eventbus.EventFlow; import org.toop.framework.eventbus.EventFlow;
import org.toop.framework.eventbus.GlobalEventBus; import org.toop.framework.eventbus.GlobalEventBus;
import org.toop.game.machinelearning.NeuralNetwork;
import org.toop.framework.networking.NetworkingClientEventListener; import org.toop.framework.networking.NetworkingClientEventListener;
import org.toop.framework.networking.NetworkingClientManager; import org.toop.framework.networking.NetworkingClientManager;
import org.toop.framework.resource.ResourceLoader; import org.toop.framework.resource.ResourceLoader;
@@ -138,8 +139,14 @@ public final class App extends Application {
stage.show(); stage.show();
//startML();
} }
private void startML() {
NeuralNetwork nn = new NeuralNetwork();
nn.init();
}
private void setKeybinds(StackPane root) { private void setKeybinds(StackPane root) {
root.addEventHandler(KeyEvent.KEY_PRESSED,event -> { root.addEventHandler(KeyEvent.KEY_PRESSED,event -> {
if (event.getCode() == KeyCode.ESCAPE) { if (event.getCode() == KeyCode.ESCAPE) {

View File

@@ -21,7 +21,7 @@ import org.toop.game.games.reversi.BitboardReversi;
import org.toop.game.games.tictactoe.BitboardTicTacToe; import org.toop.game.games.tictactoe.BitboardTicTacToe;
import org.toop.game.players.ArtificialPlayer; import org.toop.game.players.ArtificialPlayer;
import org.toop.game.players.OnlinePlayer; import org.toop.game.players.OnlinePlayer;
import org.toop.game.players.RandomAI; import org.toop.game.players.ai.RandomAI;
import org.toop.local.AppContext; import org.toop.local.AppContext;
import java.util.List; import java.util.List;

View File

@@ -55,7 +55,7 @@ public class GenericGameController<T extends TurnBasedGame<T>> implements GameCo
// Listen to updates // Listen to updates
eventFlow eventFlow
.listen(GUIEvents.GameEnded.class, this::onGameFinish, false) .listen(GUIEvents.GameEnded.class, this::onGameFinish, false)
.listen(GUIEvents.PlayerAttemptedMove.class, event -> {if (getCurrentPlayer() instanceof LocalPlayer<T> lp){lp.setMove(event.move());}}, false); .listen(GUIEvents.PlayerAttemptedMove.class, event -> {if (getCurrentPlayer() instanceof LocalPlayer<T> lp){lp.setLastMove(event.move());}}, false);
} }
public void start(){ public void start(){

View File

@@ -2,9 +2,6 @@ package org.toop.app.widget.view;
import javafx.application.Platform; import javafx.application.Platform;
import org.toop.app.GameInformation; import org.toop.app.GameInformation;
import org.toop.app.canvas.ReversiBitCanvas;
import org.toop.app.canvas.TicTacToeBitCanvas;
import org.toop.app.gameControllers.GenericGameController;
import org.toop.app.gameControllers.ReversiBitController; import org.toop.app.gameControllers.ReversiBitController;
import org.toop.app.gameControllers.TicTacToeBitController; import org.toop.app.gameControllers.TicTacToeBitController;
import org.toop.framework.gameFramework.controller.GameController; import org.toop.framework.gameFramework.controller.GameController;
@@ -18,8 +15,8 @@ import org.toop.app.widget.complex.PlayerInfoWidget;
import org.toop.app.widget.complex.ViewWidget; import org.toop.app.widget.complex.ViewWidget;
import org.toop.app.widget.popup.ErrorPopup; import org.toop.app.widget.popup.ErrorPopup;
import org.toop.app.widget.tutorial.*; import org.toop.app.widget.tutorial.*;
import org.toop.game.players.MiniMaxAI; import org.toop.game.players.ai.MiniMaxAI;
import org.toop.game.players.RandomAI; import org.toop.game.players.ai.RandomAI;
import org.toop.local.AppContext; import org.toop.local.AppContext;
import javafx.geometry.Pos; import javafx.geometry.Pos;
@@ -27,9 +24,6 @@ import javafx.scene.control.ScrollPane;
import javafx.scene.layout.VBox; import javafx.scene.layout.VBox;
import org.toop.local.AppSettings; import org.toop.local.AppSettings;
import java.util.Arrays;
import java.util.Random;
public class LocalMultiplayerView extends ViewWidget { public class LocalMultiplayerView extends ViewWidget {
private final GameInformation information; private final GameInformation information;

View File

@@ -146,7 +146,13 @@
<artifactId>error_prone_annotations</artifactId> <artifactId>error_prone_annotations</artifactId>
<version>2.42.0</version> <version>2.42.0</version>
</dependency> </dependency>
</dependencies> <dependency>
<groupId>org.deeplearning4j</groupId>
<artifactId>deeplearning4j-nn</artifactId>
<version>1.0.0-M2.1</version>
<scope>compile</scope>
</dependency>
</dependencies>
<build> <build>
<plugins> <plugins>

View File

@@ -5,46 +5,66 @@ import org.apache.logging.log4j.Logger;
import org.toop.framework.gameFramework.model.game.TurnBasedGame; import org.toop.framework.gameFramework.model.game.TurnBasedGame;
/** /**
* Abstract class representing a player in a game. * Base class for players in a turn-based game.
* <p> *
* Players are entities that can make moves based on the current state of a game. * @param <T> the game type
* player types, such as human players or AI players.
* </p>
* <p>
* Subclasses should override the {@link #getMove(GameR)} method to provide
* specific move logic.
* </p>
*/ */
public abstract class AbstractPlayer<T extends TurnBasedGame<T>> implements Player<T> { public abstract class AbstractPlayer<T extends TurnBasedGame<T>> implements Player<T> {
private final Logger logger = LogManager.getLogger(this.getClass());
private final Logger logger = LogManager.getLogger(this.getClass());
private final String name; private final String name;
/**
* Creates a new player with the given name.
*
* @param name the player name
*/
protected AbstractPlayer(String name) { protected AbstractPlayer(String name) {
this.name = name; this.name = name;
} }
/**
* Creates a copy of another player.
*
* @param other the player to copy
*/
protected AbstractPlayer(AbstractPlayer<T> other) { protected AbstractPlayer(AbstractPlayer<T> other) {
this.name = other.name; this.name = other.name;
} }
/** /**
* Determines the next move based on the provided game state. * Gets the player's move for the given game state.
* A deep copy is provided so the player cannot modify the real state.
* <p> * <p>
* The default implementation throws an {@link UnsupportedOperationException}, * This method uses the Template Method Pattern: it defines the fixed
* indicating that concrete subclasses must override this method to provide * algorithm and delegates the variable part to {@link #determineMove(T)}.
* actual move logic.
* </p>
* *
* @param gameCopy a snapshot of the current game state * @param game the current game
* @return an integer representing the chosen move * @return the chosen move
* @throws UnsupportedOperationException if the method is not overridden
*/ */
public long getMove(T gameCopy) { public final long getMove(T game) {
logger.error("Method getMove not implemented."); return determineMove(game.deepCopy());
throw new UnsupportedOperationException("Not supported yet.");
} }
public String getName(){
/**
* Determines the player's move using a safe copy of the game.
* <p>
* This method is called by {@link #getMove(T)} and should contain
* the player's strategy for choosing a move.
*
* @param gameCopy a deep copy of the game
* @return the chosen move
*/
protected abstract long determineMove(T gameCopy);
/**
* Returns the player's name.
*
* @return the name
*/
public String getName() {
return this.name; return this.name;
} }
} }

View File

@@ -105,6 +105,16 @@
<version>0.1</version> <version>0.1</version>
<scope>compile</scope> <scope>compile</scope>
</dependency> </dependency>
<dependency>
<groupId>org.deeplearning4j</groupId>
<artifactId>deeplearning4j-core</artifactId>
<version>1.0.0-M2.1</version>
</dependency>
<dependency>
<groupId>org.nd4j</groupId>
<artifactId>nd4j-native-platform</artifactId>
<version>1.0.0-M2.1</version>
</dependency>
</dependencies> </dependencies>

View File

@@ -167,4 +167,13 @@ public class BitboardReversi extends BitboardGame<BitboardReversi> {
private long shift(long bit, int shift, long mask) { private long shift(long bit, int shift, long mask) {
return shift > 0 ? (bit << shift) & mask : (bit >>> -shift) & mask; return shift > 0 ? (bit << shift) & mask : (bit >>> -shift) & mask;
} }
public boolean isGameOver(){
BitboardReversi copy = this.deepCopy();
if (copy.getLegalMoves() == 0){
nextTurn();
return copy.getLegalMoves() == 0;
}
return false;
}
} }

View File

@@ -0,0 +1,228 @@
package org.toop.game.machinelearning;
import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.layers.DenseLayer;
import org.deeplearning4j.nn.conf.layers.OutputLayer;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.nn.weights.WeightInit;
import org.deeplearning4j.util.ModelSerializer;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.dataset.DataSet;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.learning.config.Adam;
import org.nd4j.linalg.lossfunctions.LossFunctions;
import org.toop.framework.gameFramework.GameState;
import org.toop.framework.gameFramework.model.game.PlayResult;
import org.toop.framework.gameFramework.model.player.AbstractAI;
import org.toop.framework.gameFramework.model.player.Player;
import org.toop.game.games.reversi.BitboardReversi;
import org.toop.game.players.ArtificialPlayer;
import org.toop.game.players.ai.MiniMaxAI;
import org.toop.game.players.ai.RandomAI;
import org.toop.game.players.ai.ReversiAIML;
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import static java.lang.Math.abs;
import static java.lang.Math.random;
public class NeuralNetwork {
private MultiLayerConfiguration conf;
private MultiLayerNetwork model;
private AbstractAI<BitboardReversi> opponentAI;
private AbstractAI<BitboardReversi> opponentMM = new MiniMaxAI<>(6);
private AbstractAI<BitboardReversi> opponentRand = new RandomAI<>();
private AbstractAI<BitboardReversi> opponentAIML = new ReversiAIML<>();
private Player[] playerSet = new Player[4];
public NeuralNetwork() {}
public void init(){
initPlayers();
conf = new NeuralNetConfiguration.Builder()
.updater(new Adam(0.001))
.weightInit(WeightInit.XAVIER) //todo understand
.list()
.layer(new DenseLayer.Builder()
.nIn(64)
.nOut(128)
.activation(Activation.RELU)
.build())
.layer(new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
.nIn(128)
.nOut(64)
.activation(Activation.SOFTMAX)
.build())
.build();
model = new MultiLayerNetwork(conf);
IO.println(model.params());
loadModel();
IO.println(model.params());
model.init();
IO.println(model.summary());
model.setLearningRate(0.0003);
trainingLoop();
saveModel();
}
public void initPlayers(){
playerSet[0] = new ArtificialPlayer<>(new MiniMaxAI<BitboardReversi>(6),"MiniMaxAI");
playerSet[1] = new ArtificialPlayer<>(new RandomAI<BitboardReversi>(),"RandomAI");
playerSet[2] = new ArtificialPlayer<>(new ReversiAIML<BitboardReversi>(),"MachineLearningAI");
}
public void saveModel(){
File modelFile = new File("reversi-model.zip");
try {
ModelSerializer.writeModel(model, modelFile, true);
}catch (Exception e){
e.printStackTrace();
}
}
public void loadModel(){
File modelFile = new File("reversi-model.zip");
try {
model = ModelSerializer.restoreMultiLayerNetwork(modelFile);
} catch (IOException e) {
e.printStackTrace();
}
}
public void trainingLoop(){
int totalGames = 5000;
double epsilon = 0.05;
long start = System.nanoTime();
for (int game = 0; game<totalGames; game++){
char modelPlayer = random()<0.5?'B':'W';
BitboardReversi reversi = new BitboardReversi(new Player[2]);
opponentAI = getOpponentAI();
List<StateAction> gameHistory = new ArrayList<>();
PlayResult state = new PlayResult(GameState.NORMAL,reversi.getCurrentTurn());
double reward = 0;
while (state.state() != GameState.DRAW && state.state() != GameState.WIN){
int curr = reversi.getCurrentTurn();
long move;
if (curr == modelPlayer) {
long[] input = reversi.getBoard();
if (Math.random() < epsilon) {
long moves = reversi.getLegalMoves();
move = (long) (Math.random() * Long.bitCount(moves) - .5f);
} else {
INDArray boardInput = Nd4j.create(new long[][]{input});
INDArray prediction = model.output(boardInput);
int location = pickLegalMove(prediction, reversi);
gameHistory.add(new StateAction(input, location));
move = location;
}
}else{
move = opponentAI.getMove(reversi);
}
state = reversi.play(move);
}
//IO.println(model.params());
BitboardReversi.Score score = reversi.getScore();
int scoreDif = abs(score.black() - score.white());
if (score.black() > score.white()){
reward = 1 + ((scoreDif / 64.0) * 0.5);
}else if (score.black() < score.white()){
reward = -1 - ((scoreDif / 64.0) * 0.5);
}else{
reward = 0;
}
if (modelPlayer == 'W'){
reward = -reward;
}
for (StateAction step : gameHistory){
trainFromHistory(step, reward);
}
//IO.println("Wr: " + (double)p1wins/(game+1) + " draws: " + draws);
if(game % 100 == 0){
IO.println("Completed game " + game + " | Reward: " + reward);
//IO.println(Arrays.toString(reversi.getBoardDouble()));
}
}
long end = System.nanoTime();
IO.println((end-start));
}
private int pickLegalMove(INDArray prediction, BitboardReversi reversi) {
double[] logits = prediction.toDoubleVector();
long legalMoves = reversi.getLegalMoves();
if (legalMoves == 0L) {
return -1;
}
if (Math.random() < 0.01) {
int randomIndex = (int) (Math.random() * Long.bitCount(legalMoves));
long moves = legalMoves;
for (int i = 0; i < randomIndex; i++) {
moves &= moves - 1;
}
return Long.numberOfTrailingZeros(moves);
}
int bestMove = -1;
double bestVal = Double.NEGATIVE_INFINITY;
long moves = legalMoves;
while (moves != 0L) {
int move = Long.numberOfTrailingZeros(moves);
double value = logits[move];
if (value > bestVal) {
bestVal = value;
bestMove = move;
}
moves &= moves - 1;
}
return bestMove;
}
private AbstractAI<BitboardReversi> getOpponentAI(){
return switch ((int) (Math.random() * 4)) {
case 0 -> opponentRand;
case 1 -> opponentMM;
case 2 -> opponentAIML;
default -> opponentRand;
};
}
private void trainFromHistory(StateAction step, double reward){
double[] output = new double[64];
output[step.action] = reward;
DataSet ds = new DataSet(
Nd4j.create(new long[][] { step.state }),
Nd4j.create(new double[][] { output })
);
model.fit(ds);
}
}

View File

@@ -0,0 +1,10 @@
package org.toop.game.machinelearning;
public class StateAction {
long[] state;
int action;
public StateAction(long[] state, int action) {
this.state = state;
this.action = action;
}
}

View File

@@ -4,52 +4,52 @@ import org.toop.framework.gameFramework.model.player.*;
import org.toop.framework.gameFramework.model.game.TurnBasedGame; import org.toop.framework.gameFramework.model.game.TurnBasedGame;
/** /**
* Represents a player controlled by an AI in a game. * Represents a player controlled by an AI.
* <p>
* This player uses an {@link AbstractAI} instance to determine its moves. The generic
* parameter {@code T} specifies the type of {@link GameR} the AI can handle.
* </p>
* *
* @param <T> the specific type of game this AI player can play * @param <T> the type of turn-based game
*/ */
public class ArtificialPlayer<T extends TurnBasedGame<T>> extends AbstractPlayer<T> { public class ArtificialPlayer<T extends TurnBasedGame<T>> extends AbstractPlayer<T> {
/** The AI instance used to calculate moves. */
private final AI<T> ai; private final AI<T> ai;
/** /**
* Constructs a new ArtificialPlayer using the specified AI. * Creates a new AI-controlled player.
* *
* @param ai the AI instance that determines moves for this player * @param ai the AI controlling this player
* @param name the player's name
*/ */
public ArtificialPlayer(AI<T> ai, String name) { public ArtificialPlayer(AI<T> ai, String name) {
super(name); super(name);
this.ai = ai; this.ai = ai;
} }
/**
* Creates a copy of another AI-controlled player.
*
* @param other the player to copy
*/
public ArtificialPlayer(ArtificialPlayer<T> other) { public ArtificialPlayer(ArtificialPlayer<T> other) {
super(other); super(other);
this.ai = other.ai.deepCopy(); this.ai = other.ai.deepCopy();
} }
/** /**
* Determines the next move for this player using its AI. * Determines the player's move using the AI.
* <p>
* This method overrides {@link AbstractPlayer#getMove(GameR)}. Because the AI is
* typed to {@code T}, a runtime cast is required. It is the caller's
* responsibility to ensure that {@code gameCopy} is of type {@code T}.
* </p>
* *
* @param gameCopy a copy of the current game state * @param gameCopy a copy of the current game
* @return the integer representing the chosen move * @return the move chosen by the AI
* @throws ClassCastException if {@code gameCopy} is not of type {@code T}
*/ */
public long getMove(T gameCopy) { protected long determineMove(T gameCopy) {
return ai.getMove(gameCopy); return ai.getMove(gameCopy);
} }
/**
* Creates a deep copy of this AI player.
*
* @return a copy of this player
*/
@Override @Override
public ArtificialPlayer<T> deepCopy() { public ArtificialPlayer<T> deepCopy() {
return new ArtificialPlayer<T>(this); return new ArtificialPlayer<>(this);
} }
} }

View File

@@ -2,85 +2,86 @@ package org.toop.game.players;
import org.toop.framework.gameFramework.model.game.TurnBasedGame; import org.toop.framework.gameFramework.model.game.TurnBasedGame;
import org.toop.framework.gameFramework.model.player.AbstractPlayer; import org.toop.framework.gameFramework.model.player.AbstractPlayer;
import org.toop.framework.gameFramework.model.player.Player;
import java.util.concurrent.CompletableFuture; import java.util.concurrent.CompletableFuture;
import java.util.concurrent.ExecutionException; import java.util.concurrent.ExecutionException;
/**
* Represents a local player who provides moves manually.
*
* @param <T> the type of turn-based game
*/
public class LocalPlayer<T extends TurnBasedGame<T>> extends AbstractPlayer<T> { public class LocalPlayer<T extends TurnBasedGame<T>> extends AbstractPlayer<T> {
// Future can be used with event system, IF unsubscribeAfterSuccess works...
// private CompletableFuture<Integer> LastMove = new CompletableFuture<>();
private CompletableFuture<Long> LastMove; private CompletableFuture<Long> LastMove = new CompletableFuture<>();
/**
* Creates a new local player with the given name.
*
* @param name the player's name
*/
public LocalPlayer(String name) { public LocalPlayer(String name) {
super(name); super(name);
} }
/**
* Creates a copy of another local player.
*
* @param other the player to copy
*/
public LocalPlayer(LocalPlayer<T> other) { public LocalPlayer(LocalPlayer<T> other) {
super(other); super(other);
this.LastMove = other.LastMove;
} }
/**
* Waits for and returns the player's next legal move.
*
* @param gameCopy a copy of the current game
* @return the chosen move
*/
@Override @Override
public long getMove(T gameCopy) { protected long determineMove(T gameCopy) {
return getValidMove(gameCopy); long legalMoves = gameCopy.getLegalMoves();
long move;
do {
move = getLastMove();
} while ((legalMoves & move) == 0);
return move;
} }
public void setMove(long move) { /**
* Sets the player's last move.
*
* @param move the move to set
*/
public void setLastMove(long move) {
LastMove.complete(move); LastMove.complete(move);
} }
// TODO: helper function, would like to replace to get rid of this method /**
public static boolean contains(int[] array, int value){ * Waits for the next move from the player.
for (int i : array) if (i == value) return true; *
return false; * @return the chosen move or 0 if interrupted
} */
private long getLastMove() {
private long getMove2(T gameCopy) { LastMove = new CompletableFuture<>(); // Reset the future
LastMove = new CompletableFuture<>();
long move = 0;
try { try {
move = LastMove.get(); return LastMove.get();
System.out.println(Long.toBinaryString(move)); } catch (ExecutionException | InterruptedException e) {
} catch (InterruptedException | ExecutionException e) { return 0;
// TODO: Add proper logging.
e.printStackTrace();
} }
return move;
}
protected long getValidMove(T gameCopy){
// Get this player's valid moves
long validMoves = gameCopy.getLegalMoves();
// Make sure provided move is valid
// TODO: Limit amount of retries?
// TODO: Stop copying game so many times
long move = getMove2(gameCopy.deepCopy());
while ((validMoves & move) == 0) {
System.out.println("Not a valid move, try again");
move = getMove2(gameCopy.deepCopy());
}
return move;
} }
/**
* Creates a deep copy of this local player.
*
* @return a copy of this player
*/
@Override @Override
public LocalPlayer<T> deepCopy() { public LocalPlayer<T> deepCopy() {
return new LocalPlayer<T>(this.getName()); return new LocalPlayer<>(this);
} }
/*public void register() {
// Listening to PlayerAttemptedMove
new EventFlow().listen(GUIEvents.PlayerAttemptedMove.class, event -> {
if (!LastMove.isDone()) {
LastMove.complete(event.move()); // complete the future
}
}, true); // auto-unsubscribe
}
// This blocks until the next move arrives
public int take() throws ExecutionException, InterruptedException {
int move = LastMove.get(); // blocking
LastMove = new CompletableFuture<>(); // reset for next move
return move;
}*/
} }

View File

@@ -5,30 +5,45 @@ import org.toop.framework.gameFramework.model.player.AbstractPlayer;
import org.toop.framework.gameFramework.model.player.Player; import org.toop.framework.gameFramework.model.player.Player;
/** /**
* Represents a player controlled remotely or over a network. * Represents a player that participates online.
* <p> *
* This class extends {@link AbstractPlayer} and can be used to implement game logic * @param <T> the type of turn-based game
* where moves are provided by an external source (e.g., another user or a server).
* Currently, this class is a placeholder and does not implement move logic.
* </p>
*/ */
public class OnlinePlayer<T extends TurnBasedGame<T>> extends AbstractPlayer<T> { public class OnlinePlayer<T extends TurnBasedGame<T>> extends AbstractPlayer<T> {
/** /**
* Constructs a new OnlinePlayer. * Creates a new online player with the given name.
* <p> *
* Currently, no additional initialization is performed. Subclasses or * @param name the name of the player
* future implementations should provide mechanisms to receive moves from
* an external source.
*/ */
public OnlinePlayer(String name) { public OnlinePlayer(String name) {
super(name); super(name);
} }
/**
* Creates a copy of another online player.
*
* @param other the player to copy
*/
public OnlinePlayer(OnlinePlayer<T> other) { public OnlinePlayer(OnlinePlayer<T> other) {
super(other); super(other);
} }
/**
* {@inheritDoc}
* <p>
* This method is not supported for online players.
*
* @throws UnsupportedOperationException always
*/
@Override
protected long determineMove(T gameCopy) {
throw new UnsupportedOperationException("An online player does not support determining move");
}
/**
* {@inheritDoc}
*/
@Override @Override
public Player<T> deepCopy() { public Player<T> deepCopy() {
return new OnlinePlayer<>(this); return new OnlinePlayer<>(this);

View File

@@ -1,4 +1,4 @@
package org.toop.game.players; package org.toop.game.players.ai;
import org.toop.framework.gameFramework.GameState; import org.toop.framework.gameFramework.GameState;
import org.toop.framework.gameFramework.model.game.PlayResult; import org.toop.framework.gameFramework.model.game.PlayResult;

View File

@@ -1,4 +1,4 @@
package org.toop.game.players; package org.toop.game.players.ai;
import org.toop.framework.gameFramework.model.game.TurnBasedGame; import org.toop.framework.gameFramework.model.game.TurnBasedGame;
import org.toop.framework.gameFramework.model.player.AbstractAI; import org.toop.framework.gameFramework.model.player.AbstractAI;

View File

@@ -0,0 +1,80 @@
package org.toop.game.players.ai;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.util.ModelSerializer;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import org.toop.framework.gameFramework.model.game.TurnBasedGame;
import org.toop.framework.gameFramework.model.player.AI;
import org.toop.framework.gameFramework.model.player.AbstractAI;
import org.toop.game.games.reversi.BitboardReversi;
import java.io.IOException;
import java.io.InputStream;
import static java.lang.Math.random;
public class ReversiAIML<T extends TurnBasedGame<T>> extends AbstractAI<T> {
MultiLayerNetwork model;
public ReversiAIML() {
InputStream is = getClass().getResourceAsStream("/reversi-model.zip");
try {
assert is != null;
model = ModelSerializer.restoreMultiLayerNetwork(is);
} catch (IOException e) {}
}
private int pickLegalMove(INDArray prediction, BitboardReversi reversi) {
double[] logits = prediction.toDoubleVector();
long legalMoves = reversi.getLegalMoves();
if (legalMoves == 0L) {
return -1;
}
if (Math.random() < 0.01) {
int randomIndex = (int) (Math.random() * Long.bitCount(legalMoves));
long moves = legalMoves;
for (int i = 0; i < randomIndex; i++) {
moves &= moves - 1;
}
return Long.numberOfTrailingZeros(moves);
}
int bestMove = -1;
double bestVal = Double.NEGATIVE_INFINITY;
long moves = legalMoves;
while (moves != 0L) {
int move = Long.numberOfTrailingZeros(moves);
double value = logits[move];
if (value > bestVal) {
bestVal = value;
bestMove = move;
}
moves &= moves - 1;
}
return bestMove;
}
@Override
public long getMove(T game) {
long[] input = game.getBoard();
INDArray boardInput = Nd4j.create(new long[][] { input });
INDArray prediction = model.output(boardInput);
int move = pickLegalMove(prediction,(BitboardReversi) game);
return move;
}
@Override
public ReversiAIML<T> deepCopy() {
return new ReversiAIML();
}
}

View File

@@ -0,0 +1,272 @@
/*//todo fix this mess
package org.toop.game.tictactoe;
import java.util.*;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import org.toop.framework.gameFramework.model.player.AbstractAI;
import org.toop.framework.gameFramework.model.player.Player;
import org.toop.game.AI;
import org.toop.game.enumerators.GameState;
import org.toop.game.games.reversi.ReversiAIR;
import org.toop.game.games.reversi.ReversiR;
import org.toop.game.records.Move;
import org.toop.game.reversi.Reversi;
import org.toop.game.reversi.ReversiAI;
import org.toop.game.players.ai.ReversiAIML;
import org.toop.game.games.reversi.ReversiAISimple;
import static org.junit.jupiter.api.Assertions.*;
class ReversiTest {
private ReversiR game;
private ReversiAIR ai;
private ReversiAIML aiml;
private ReversiAISimple aiSimple;
private AbstractAI<ReversiR> player1;
private AbstractAI<ReversiR> player2;
private Player[] players = new Player[2];
@BeforeEach
void setup() {
game = new ReversiR(players);
ai = new ReversiAIR();
aiml = new ReversiAIML();
aiSimple = new ReversiAISimple();
}
@Test
void testCorrectStartPiecesPlaced() {
assertNotNull(game);
assertEquals('W', game.getBoard()[27]);
assertEquals('B', game.getBoard()[28]);
assertEquals('B', game.getBoard()[35]);
assertEquals('W', game.getBoard()[36]);
}
@Test
void testGetLegalMovesAtStart() {
Move[] moves = game.getLegalMoves();
List<Move> expectedMoves = List.of(
new Move(19, 'B'),
new Move(26, 'B'),
new Move(37, 'B'),
new Move(44, 'B')
);
assertNotNull(moves);
assertTrue(moves.length > 0);
assertMovesMatchIgnoreOrder(expectedMoves, Arrays.asList(moves));
}
private void assertMovesMatchIgnoreOrder(List<Move> expected, List<Move> actual) {
assertEquals(expected.size(), actual.size());
for (int i = 0; i < expected.size(); i++) {
assertTrue(actual.contains(expected.get(i)));
assertTrue(expected.contains(actual.get(i)));
}
}
@Test
void testMakeValidMoveFlipsPieces() {
game.play(new Move(19, 'B'));
assertEquals('B', game.getBoard()[19]);
assertEquals('B', game.getBoard()[27], "Piece should have flipped to B");
}
@Test
void testMakeInvalidMoveDoesNothing() {
char[] before = game.getBoard().clone();
game.play(new Move(0, 'B'));
assertArrayEquals(before, game.getBoard(), "Board should not change on invalid move");
}
@Test
void testTurnSwitchesAfterValidMove() {
char current = game.getCurrentPlayer();
game.play(game.getLegalMoves()[0]);
assertNotEquals(current, game.getCurrentPlayer(), "Player turn should switch after a valid move");
}
@Test
void testCountScoreCorrectlyAtStart() {
long start = System.nanoTime();
Reversi.Score score = game.getScore();
assertEquals(2, score.player1Score()); // Black
assertEquals(2, score.player2Score()); // White
long end = System.nanoTime();
IO.println((end - start));
}
@Test
void zLegalMovesInCertainPosition() {
game.play(new Move(19, 'B'));
game.play(new Move(20, 'W'));
Move[] moves = game.getLegalMoves();
List<Move> expectedMoves = List.of(
new Move(13, 'B'),
new Move(21, 'B'),
new Move(29, 'B'),
new Move(37, 'B'),
new Move(45, 'B'));
assertNotNull(moves);
assertTrue(moves.length > 0);
IO.println(Arrays.toString(moves));
assertMovesMatchIgnoreOrder(expectedMoves, Arrays.asList(moves));
}
@Test
void testCountScoreCorrectlyAtEnd() {
for (int i = 0; i < 1; i++) {
game = new Reversi();
Move[] legalMoves = game.getLegalMoves();
while (legalMoves.length > 0) {
game.play(legalMoves[(int) (Math.random() * legalMoves.length)]);
legalMoves = game.getLegalMoves();
}
Reversi.Score score = game.getScore();
IO.println(score.player1Score());
IO.println(score.player2Score());
for (int r = 0; r < game.getRowSize(); r++) {
char[] row = Arrays.copyOfRange(game.getBoard(), r * game.getColumnSize(), (r + 1) * game.getColumnSize());
IO.println(Arrays.toString(row));
}
}
}
@Test
void testPlayerMustSkipTurnIfNoValidMoves() {
game.play(new Move(19, 'B'));
game.play(new Move(34, 'W'));
game.play(new Move(45, 'B'));
game.play(new Move(11, 'W'));
game.play(new Move(42, 'B'));
game.play(new Move(54, 'W'));
game.play(new Move(37, 'B'));
game.play(new Move(46, 'W'));
game.play(new Move(63, 'B'));
game.play(new Move(62, 'W'));
game.play(new Move(29, 'B'));
game.play(new Move(50, 'W'));
game.play(new Move(55, 'B'));
game.play(new Move(30, 'W'));
game.play(new Move(53, 'B'));
game.play(new Move(38, 'W'));
game.play(new Move(61, 'B'));
game.play(new Move(52, 'W'));
game.play(new Move(51, 'B'));
game.play(new Move(60, 'W'));
game.play(new Move(59, 'B'));
assertEquals('B', game.getCurrentPlayer());
game.play(ai.findBestMove(game, 5));
game.play(ai.findBestMove(game, 5));
}
@Test
void testGameShouldEndIfNoValidMoves() {
//European Grand Prix Ghent 2017: Replay Hassan - Verstuyft J. (3-17)
game.play(new Move(19, 'B'));
game.play(new Move(20, 'W'));
game.play(new Move(29, 'B'));
game.play(new Move(22, 'W'));
game.play(new Move(21, 'B'));
game.play(new Move(34, 'W'));
game.play(new Move(23, 'B'));
game.play(new Move(13, 'W'));
game.play(new Move(26, 'B'));
game.play(new Move(18, 'W'));
game.play(new Move(12, 'B'));
game.play(new Move(4, 'W'));
game.play(new Move(17, 'B'));
game.play(new Move(31, 'W'));
GameState stateTurn15 = game.play(new Move(39, 'B'));
assertEquals(GameState.NORMAL, stateTurn15);
GameState stateTurn16 = game.play(new Move(16, 'W'));
assertEquals(GameState.WIN, stateTurn16);
GameState stateTurn17 = game.play(new Move(5, 'B'));
assertNull(stateTurn17);
Reversi.Score score = game.getScore();
assertEquals(3, score.player1Score());
assertEquals(17, score.player2Score());
}
@Test
void testAISelectsLegalMove() {
Move move = ai.findBestMove(game, 4);
assertNotNull(move);
assertTrue(containsMove(game.getLegalMoves(), move), "AI should always choose a legal move");
}
private boolean containsMove(Move[] moves, Move move) {
for (Move m : moves) {
if (m.equals(move)) return true;
}
return false;
}
@Test
void testAis() {
player1 = aiml;
player2 = ai;
testAIvsAIML();
player2 = aiSimple;
testAIvsAIML();
player1 = ai;
testAIvsAIML();
player2 = aiml;
testAIvsAIML();
player1 = aiml;
testAIvsAIML();
player1 = aiSimple;
testAIvsAIML();
}
@Test
void testAIvsAIML() {
if(player1 == null || player2 == null) {
player1 = aiml;
player2 = ai;
}
int totalGames = 2000;
IO.println("Testing... " + player1.getClass().getSimpleName() + " vs " + player2.getClass().getSimpleName() + " for " + totalGames + " games");
int p1wins = 0;
int p2wins = 0;
int draws = 0;
List<Integer> moves = new ArrayList<>();
for (int i = 0; i < totalGames; i++) {
game = new ReversiR();
while (!game.isGameOver()) {
char curr = game.getCurrentPlayer();
Move move;
if (curr == 'B') {
move = player1.findBestMove(game, 5);
} else {
move = player2.findBestMove(game, 5);
}
if (i%500 == 0) moves.add(move.position());
game.play(move);
}
if (i%500 == 0) {
IO.println(moves);
moves.clear();
}
int winner = game.getWinner();
if (winner == 1) {
p1wins++;
} else if (winner == 2) {
p2wins++;
} else {
draws++;
}
}
IO.println("p1 winrate: " + p1wins + "/" + totalGames + " = " + (double) p1wins / totalGames + "\np2wins: " + p2wins + " draws: " + draws);
}
}
*/

View File

@@ -0,0 +1,78 @@
package org.toop.game.tictactoe;
import java.util.*;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import org.toop.framework.gameFramework.model.player.Player;
import org.toop.game.games.reversi.BitboardReversi;
import org.toop.game.players.ArtificialPlayer;
import org.toop.game.players.ai.MiniMaxAI;
import org.toop.game.players.ai.RandomAI;
import static org.junit.jupiter.api.Assertions.*;
public class TestReversi {
private BitboardReversi game;
private Player[] players;
@BeforeEach
void setup(){
players = new Player[2];
players[0] = new ArtificialPlayer<BitboardReversi>(new RandomAI<BitboardReversi>(),"randomAI");
players[1] = new ArtificialPlayer<BitboardReversi>(new MiniMaxAI<BitboardReversi>(10),"miniMaxAI");
game = new BitboardReversi(players);
}
@Test
void testCorrectStartPiecesPlaced() {
assertNotNull(game);
long[] board = game.getBoard();
IO.println(Long.toBinaryString(board[0]));
IO.println(Long.toBinaryString(board[1]));
long black = board[0];
long white = board[1];
assertEquals(1L, ((white >>> 27) & 1L)); //checks if the 27-shifted long has a 1 bit
assertEquals(1L, ((black >>> 28) & 1L));
assertEquals(1L, ((black >>> 35) & 1L));
assertEquals(1L, ((white >>> 36) & 1L));
}
@Test
void testPlayGames(){
int totalGames = 1;
long start = System.nanoTime();
long midtime = System.nanoTime();
int p1wins = 0;
int p2wins = 0;
int draws = 0;
for (int i = 0; i < totalGames; i++){
game = new BitboardReversi(players);
while(!game.isGameOver()){
midtime = System.nanoTime();
int currentTurn = game.getCurrentTurn();
long move = players[currentTurn].getMove(game.deepCopy());
game.play(move);
IO.println(System.nanoTime() - midtime);
}
switch (game.getWinner()){
case 0:
p1wins++;
break;
case 1:
p2wins++;
break;
case -1:
draws++;
break;
}
}
System.out.println(System.nanoTime() - start);
IO.println(p1wins + " " + p2wins + " " + draws);
assertEquals(totalGames, p1wins + p2wins + draws);
IO.println("p1 wr: " + p1wins + "/" + totalGames + " = " + (double) p1wins / totalGames);
}
}