This commit is contained in:
DaanoGames
2025-04-21 13:07:43 +02:00
parent 856c32dc6b
commit 42891a301b
6 changed files with 55 additions and 0 deletions

55
OCR/EasyOCR_2.py Normal file
View File

@@ -0,0 +1,55 @@
import cv2
from matplotlib import pyplot as plt
import numpy as np
import easyocr
import imutils
import random
img = cv2.imread("Test5.jpg") #read image
plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
plt.title('Original Image')
plt.show()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #convert image to gray
bfilter = cv2.bilateralFilter(gray, 11, 17, 17) #Noise reduction
plt.imshow(cv2.cvtColor(bfilter, cv2.COLOR_BGR2RGB)) #show processed image
plt.title('Processed Image')
plt.show()
edged = cv2.Canny(bfilter, 30, 200) #Edge detection
plt.imshow(cv2.cvtColor(edged, cv2.COLOR_BGR2RGB))
plt.title('Edged Processed Image')
plt.show()
keypoints = cv2.findContours(edged.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) #Find contours
contours = imutils.grab_contours(keypoints) #Grab contours
contours = sorted(contours, key=cv2.contourArea, reverse=True)[:10] #Sort contours
#Loop over our contours to find the best possible approximate contour of 10 contours
location = None
for contour in contours:
approx = cv2.approxPolyDP(contour, 10, True)
if len(approx) == 4:
location = approx
break
print("Location: ", location)
mask = np.zeros(gray.shape, np.uint8) #create blank image with same dimensions as the original image
new_image = cv2.drawContours(mask, [location], 0,255, -1) #Draw contours on the mask image
new_image = cv2.bitwise_and(img, img, mask=mask) #Take bitwise AND between the original image and mask image
plt.imshow(cv2.cvtColor(new_image, cv2.COLOR_BGR2RGB)) #show the final image
plt.show()
(x,y) = np.where(mask==255) #Find the co-ordinates of the four corners of the document
(x1, y1) = (np.min(x), np.min(y)) #Find the top left corner
(x2, y2) = (np.max(x), np.max(y)) #Find the bottom right corner
cropped_image = gray[x1:x2+1, y1:y2+1] #Crop the image using the co-ordinates
plt.imshow(cv2.cvtColor(cropped_image, cv2.COLOR_BGR2RGB)) #show the cropped image
plt.show()
reader = easyocr.Reader(['en']) #create an easyocr reader object with english as the language
result = reader.readtext(cropped_image) #read text from the cropped image
print(result)

BIN
OCR/Test.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 KiB

BIN
OCR/Test2.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 192 KiB

BIN
OCR/Test3.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 262 KiB

BIN
OCR/Test4.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 313 KiB

BIN
OCR/Test5.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 613 KiB