Moved ANPR system to image processing

This commit is contained in:
2025-06-12 11:48:20 +02:00
parent d422268a03
commit a92fbc9638
3 changed files with 48 additions and 12 deletions

View File

@@ -1,12 +1,11 @@
from ultralytics import YOLO
from ultralytics.engine.results import Boxes
from PIL import Image
import numpy as np
import easyocr
car_model = YOLO("yolov8n.pt")
plate_model = YOLO("license_plate_detector.pt")
reader = easyocr.Reader(["nl"])
ocr_reader = easyocr.Reader(["nl"])
img = Image.open("test.jpg")
@@ -42,5 +41,6 @@ for r in results:
lp_img = cropped_img.crop((x1, y1, x2, y2))
lp_img.save("license_plate.jpg")
lp_np = np.array(object=lp_img)
result = reader.readtext(image=lp_np)
result = ocr_reader.readtext(image=lp_np)
print(result)
print(result[0][1]) # type: ignore

View File

@@ -3,6 +3,13 @@ from flask_migrate import Migrate
from flask_sqlalchemy import SQLAlchemy
from flask_login import LoginManager
from io import BytesIO
from ultralytics import YOLO
import easyocr
# ANPR shiz
car_model = YOLO("yolov8n.pt")
plate_model = YOLO("license_plate_detector.pt")
ocr_reader = easyocr.Reader(["nl"])
# from authlib.integrations.flask_client import OAuth

View File

@@ -1,19 +1,48 @@
import io
from application import car_model, plate_model, ocr_reader
from PIL import Image
import numpy as np
async def process_image(image: bytes) -> str:
print("Saving file to memory")
image_file = io.BytesIO(image)
print("Processing image")
# anpr_info = await anpr.detect(image_file) # type: ignore
img = Image.open(image_file)
# if anpr_info is None:
# print("Something went wrong with ANPR")
# return ""
results = car_model.predict(source=img)
# if not anpr_info["is_plate"]:
# return ""
cars: list[tuple[int, tuple[int, int, int, int]]] = []
# print(anpr_info["plate_number"])
return "" # str(anpr_info["plate_number"])
# Filter out the cars and calculate box size
for r in results:
if r.boxes:
for box in r.boxes:
cls_name = r.names[int(box.cls[0])]
if cls_name == "car":
x1, y1, x2, y2 = map(int, box.xyxy[0])
size = (x2 - x1) ** 2 + (y2 - y1) ** 2
cars.append((size, (x1, y1, x2, y2)))
# Get the biggest car box
size, corners = max(cars, key=lambda x: x[0])
# Crop biggest car
cropped_img = img.crop(corners)
cropped_img.save("car_crop_pillow.jpg")
# Search for license plates in car box and OCR all
results = plate_model.predict(source=cropped_img)
for r in results:
if r.boxes:
for box in r.boxes:
cls_name = r.names[int(box.cls[0])]
if cls_name == "License_Plate":
x1, y1, x2, y2 = map(int, box.xyxy[0])
lp_img = cropped_img.crop((x1, y1, x2, y2))
lp_img.save("license_plate.jpg")
lp_np = np.array(object=lp_img)
result = ocr_reader.readtext(image=lp_np)
print(result)
return str(result[0][1]) # type: ignore