mirror of
https://github.com/2OOP/pism.git
synced 2026-02-04 10:54:51 +00:00
Compare commits
8 Commits
4d31a8ed44
...
ReversiML
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
5501c3893f | ||
|
|
ffdec38e5d | ||
|
|
1ae79daef0 | ||
|
|
cd8eb99559 | ||
|
|
03dc6130e2 | ||
|
|
ca7f9e8ecf | ||
|
|
f6d90ed439 | ||
|
|
7e913ff50f |
@@ -16,6 +16,7 @@ import org.toop.framework.audio.*;
|
||||
import org.toop.framework.audio.events.AudioEvents;
|
||||
import org.toop.framework.eventbus.EventFlow;
|
||||
import org.toop.framework.eventbus.GlobalEventBus;
|
||||
import org.toop.game.machinelearning.NeuralNetwork;
|
||||
import org.toop.framework.networking.NetworkingClientEventListener;
|
||||
import org.toop.framework.networking.NetworkingClientManager;
|
||||
import org.toop.framework.resource.ResourceLoader;
|
||||
@@ -138,8 +139,14 @@ public final class App extends Application {
|
||||
|
||||
stage.show();
|
||||
|
||||
//startML();
|
||||
}
|
||||
|
||||
private void startML() {
|
||||
NeuralNetwork nn = new NeuralNetwork();
|
||||
nn.init();
|
||||
}
|
||||
|
||||
private void setKeybinds(StackPane root) {
|
||||
root.addEventHandler(KeyEvent.KEY_PRESSED,event -> {
|
||||
if (event.getCode() == KeyCode.ESCAPE) {
|
||||
|
||||
@@ -21,7 +21,7 @@ import org.toop.game.games.reversi.BitboardReversi;
|
||||
import org.toop.game.games.tictactoe.BitboardTicTacToe;
|
||||
import org.toop.game.players.ArtificialPlayer;
|
||||
import org.toop.game.players.OnlinePlayer;
|
||||
import org.toop.game.players.RandomAI;
|
||||
import org.toop.game.players.ai.RandomAI;
|
||||
import org.toop.local.AppContext;
|
||||
|
||||
import java.util.List;
|
||||
|
||||
@@ -55,7 +55,7 @@ public class GenericGameController<T extends TurnBasedGame<T>> implements GameCo
|
||||
// Listen to updates
|
||||
eventFlow
|
||||
.listen(GUIEvents.GameEnded.class, this::onGameFinish, false)
|
||||
.listen(GUIEvents.PlayerAttemptedMove.class, event -> {if (getCurrentPlayer() instanceof LocalPlayer<T> lp){lp.setMove(event.move());}}, false);
|
||||
.listen(GUIEvents.PlayerAttemptedMove.class, event -> {if (getCurrentPlayer() instanceof LocalPlayer<T> lp){lp.setLastMove(event.move());}}, false);
|
||||
}
|
||||
|
||||
public void start(){
|
||||
|
||||
@@ -2,9 +2,6 @@ package org.toop.app.widget.view;
|
||||
|
||||
import javafx.application.Platform;
|
||||
import org.toop.app.GameInformation;
|
||||
import org.toop.app.canvas.ReversiBitCanvas;
|
||||
import org.toop.app.canvas.TicTacToeBitCanvas;
|
||||
import org.toop.app.gameControllers.GenericGameController;
|
||||
import org.toop.app.gameControllers.ReversiBitController;
|
||||
import org.toop.app.gameControllers.TicTacToeBitController;
|
||||
import org.toop.framework.gameFramework.controller.GameController;
|
||||
@@ -18,8 +15,8 @@ import org.toop.app.widget.complex.PlayerInfoWidget;
|
||||
import org.toop.app.widget.complex.ViewWidget;
|
||||
import org.toop.app.widget.popup.ErrorPopup;
|
||||
import org.toop.app.widget.tutorial.*;
|
||||
import org.toop.game.players.MiniMaxAI;
|
||||
import org.toop.game.players.RandomAI;
|
||||
import org.toop.game.players.ai.MiniMaxAI;
|
||||
import org.toop.game.players.ai.RandomAI;
|
||||
import org.toop.local.AppContext;
|
||||
|
||||
import javafx.geometry.Pos;
|
||||
@@ -27,9 +24,6 @@ import javafx.scene.control.ScrollPane;
|
||||
import javafx.scene.layout.VBox;
|
||||
import org.toop.local.AppSettings;
|
||||
|
||||
import java.util.Arrays;
|
||||
import java.util.Random;
|
||||
|
||||
public class LocalMultiplayerView extends ViewWidget {
|
||||
private final GameInformation information;
|
||||
|
||||
|
||||
@@ -146,7 +146,13 @@
|
||||
<artifactId>error_prone_annotations</artifactId>
|
||||
<version>2.42.0</version>
|
||||
</dependency>
|
||||
</dependencies>
|
||||
<dependency>
|
||||
<groupId>org.deeplearning4j</groupId>
|
||||
<artifactId>deeplearning4j-nn</artifactId>
|
||||
<version>1.0.0-M2.1</version>
|
||||
<scope>compile</scope>
|
||||
</dependency>
|
||||
</dependencies>
|
||||
|
||||
<build>
|
||||
<plugins>
|
||||
|
||||
@@ -5,46 +5,66 @@ import org.apache.logging.log4j.Logger;
|
||||
import org.toop.framework.gameFramework.model.game.TurnBasedGame;
|
||||
|
||||
/**
|
||||
* Abstract class representing a player in a game.
|
||||
* <p>
|
||||
* Players are entities that can make moves based on the current state of a game.
|
||||
* player types, such as human players or AI players.
|
||||
* </p>
|
||||
* <p>
|
||||
* Subclasses should override the {@link #getMove(GameR)} method to provide
|
||||
* specific move logic.
|
||||
* </p>
|
||||
* Base class for players in a turn-based game.
|
||||
*
|
||||
* @param <T> the game type
|
||||
*/
|
||||
public abstract class AbstractPlayer<T extends TurnBasedGame<T>> implements Player<T> {
|
||||
private final Logger logger = LogManager.getLogger(this.getClass());
|
||||
|
||||
private final Logger logger = LogManager.getLogger(this.getClass());
|
||||
private final String name;
|
||||
|
||||
/**
|
||||
* Creates a new player with the given name.
|
||||
*
|
||||
* @param name the player name
|
||||
*/
|
||||
protected AbstractPlayer(String name) {
|
||||
this.name = name;
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a copy of another player.
|
||||
*
|
||||
* @param other the player to copy
|
||||
*/
|
||||
protected AbstractPlayer(AbstractPlayer<T> other) {
|
||||
this.name = other.name;
|
||||
}
|
||||
|
||||
/**
|
||||
* Determines the next move based on the provided game state.
|
||||
* Gets the player's move for the given game state.
|
||||
* A deep copy is provided so the player cannot modify the real state.
|
||||
* <p>
|
||||
* The default implementation throws an {@link UnsupportedOperationException},
|
||||
* indicating that concrete subclasses must override this method to provide
|
||||
* actual move logic.
|
||||
* </p>
|
||||
* This method uses the Template Method Pattern: it defines the fixed
|
||||
* algorithm and delegates the variable part to {@link #determineMove(T)}.
|
||||
*
|
||||
* @param gameCopy a snapshot of the current game state
|
||||
* @return an integer representing the chosen move
|
||||
* @throws UnsupportedOperationException if the method is not overridden
|
||||
* @param game the current game
|
||||
* @return the chosen move
|
||||
*/
|
||||
public long getMove(T gameCopy) {
|
||||
logger.error("Method getMove not implemented.");
|
||||
throw new UnsupportedOperationException("Not supported yet.");
|
||||
public final long getMove(T game) {
|
||||
return determineMove(game.deepCopy());
|
||||
}
|
||||
|
||||
public String getName(){
|
||||
|
||||
/**
|
||||
* Determines the player's move using a safe copy of the game.
|
||||
* <p>
|
||||
* This method is called by {@link #getMove(T)} and should contain
|
||||
* the player's strategy for choosing a move.
|
||||
*
|
||||
* @param gameCopy a deep copy of the game
|
||||
* @return the chosen move
|
||||
*/
|
||||
protected abstract long determineMove(T gameCopy);
|
||||
|
||||
|
||||
/**
|
||||
* Returns the player's name.
|
||||
*
|
||||
* @return the name
|
||||
*/
|
||||
public String getName() {
|
||||
return this.name;
|
||||
}
|
||||
}
|
||||
|
||||
10
game/pom.xml
10
game/pom.xml
@@ -105,6 +105,16 @@
|
||||
<version>0.1</version>
|
||||
<scope>compile</scope>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>org.deeplearning4j</groupId>
|
||||
<artifactId>deeplearning4j-core</artifactId>
|
||||
<version>1.0.0-M2.1</version>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>org.nd4j</groupId>
|
||||
<artifactId>nd4j-native-platform</artifactId>
|
||||
<version>1.0.0-M2.1</version>
|
||||
</dependency>
|
||||
|
||||
</dependencies>
|
||||
|
||||
|
||||
@@ -167,4 +167,13 @@ public class BitboardReversi extends BitboardGame<BitboardReversi> {
|
||||
private long shift(long bit, int shift, long mask) {
|
||||
return shift > 0 ? (bit << shift) & mask : (bit >>> -shift) & mask;
|
||||
}
|
||||
|
||||
public boolean isGameOver(){
|
||||
BitboardReversi copy = this.deepCopy();
|
||||
if (copy.getLegalMoves() == 0){
|
||||
nextTurn();
|
||||
return copy.getLegalMoves() == 0;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,228 @@
|
||||
package org.toop.game.machinelearning;
|
||||
|
||||
import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
|
||||
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
||||
import org.deeplearning4j.nn.conf.layers.DenseLayer;
|
||||
import org.deeplearning4j.nn.conf.layers.OutputLayer;
|
||||
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
|
||||
import org.deeplearning4j.nn.weights.WeightInit;
|
||||
import org.deeplearning4j.util.ModelSerializer;
|
||||
import org.nd4j.linalg.activations.Activation;
|
||||
import org.nd4j.linalg.api.ndarray.INDArray;
|
||||
import org.nd4j.linalg.dataset.DataSet;
|
||||
import org.nd4j.linalg.factory.Nd4j;
|
||||
import org.nd4j.linalg.learning.config.Adam;
|
||||
import org.nd4j.linalg.lossfunctions.LossFunctions;
|
||||
import org.toop.framework.gameFramework.GameState;
|
||||
import org.toop.framework.gameFramework.model.game.PlayResult;
|
||||
import org.toop.framework.gameFramework.model.player.AbstractAI;
|
||||
import org.toop.framework.gameFramework.model.player.Player;
|
||||
import org.toop.game.games.reversi.BitboardReversi;
|
||||
import org.toop.game.players.ArtificialPlayer;
|
||||
import org.toop.game.players.ai.MiniMaxAI;
|
||||
import org.toop.game.players.ai.RandomAI;
|
||||
import org.toop.game.players.ai.ReversiAIML;
|
||||
|
||||
import java.io.File;
|
||||
import java.io.IOException;
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
|
||||
import static java.lang.Math.abs;
|
||||
import static java.lang.Math.random;
|
||||
|
||||
public class NeuralNetwork {
|
||||
|
||||
private MultiLayerConfiguration conf;
|
||||
private MultiLayerNetwork model;
|
||||
private AbstractAI<BitboardReversi> opponentAI;
|
||||
private AbstractAI<BitboardReversi> opponentMM = new MiniMaxAI<>(6);
|
||||
private AbstractAI<BitboardReversi> opponentRand = new RandomAI<>();
|
||||
private AbstractAI<BitboardReversi> opponentAIML = new ReversiAIML<>();
|
||||
private Player[] playerSet = new Player[4];
|
||||
|
||||
|
||||
public NeuralNetwork() {}
|
||||
|
||||
public void init(){
|
||||
initPlayers();
|
||||
|
||||
conf = new NeuralNetConfiguration.Builder()
|
||||
.updater(new Adam(0.001))
|
||||
.weightInit(WeightInit.XAVIER) //todo understand
|
||||
.list()
|
||||
.layer(new DenseLayer.Builder()
|
||||
.nIn(64)
|
||||
.nOut(128)
|
||||
.activation(Activation.RELU)
|
||||
.build())
|
||||
.layer(new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
|
||||
.nIn(128)
|
||||
.nOut(64)
|
||||
.activation(Activation.SOFTMAX)
|
||||
.build())
|
||||
.build();
|
||||
model = new MultiLayerNetwork(conf);
|
||||
IO.println(model.params());
|
||||
loadModel();
|
||||
IO.println(model.params());
|
||||
model.init();
|
||||
IO.println(model.summary());
|
||||
|
||||
model.setLearningRate(0.0003);
|
||||
trainingLoop();
|
||||
saveModel();
|
||||
}
|
||||
|
||||
public void initPlayers(){
|
||||
playerSet[0] = new ArtificialPlayer<>(new MiniMaxAI<BitboardReversi>(6),"MiniMaxAI");
|
||||
playerSet[1] = new ArtificialPlayer<>(new RandomAI<BitboardReversi>(),"RandomAI");
|
||||
playerSet[2] = new ArtificialPlayer<>(new ReversiAIML<BitboardReversi>(),"MachineLearningAI");
|
||||
}
|
||||
|
||||
public void saveModel(){
|
||||
File modelFile = new File("reversi-model.zip");
|
||||
try {
|
||||
ModelSerializer.writeModel(model, modelFile, true);
|
||||
}catch (Exception e){
|
||||
e.printStackTrace();
|
||||
}
|
||||
}
|
||||
|
||||
public void loadModel(){
|
||||
File modelFile = new File("reversi-model.zip");
|
||||
try {
|
||||
model = ModelSerializer.restoreMultiLayerNetwork(modelFile);
|
||||
} catch (IOException e) {
|
||||
e.printStackTrace();
|
||||
}
|
||||
}
|
||||
|
||||
public void trainingLoop(){
|
||||
int totalGames = 5000;
|
||||
double epsilon = 0.05;
|
||||
|
||||
|
||||
|
||||
long start = System.nanoTime();
|
||||
|
||||
for (int game = 0; game<totalGames; game++){
|
||||
char modelPlayer = random()<0.5?'B':'W';
|
||||
BitboardReversi reversi = new BitboardReversi(new Player[2]);
|
||||
opponentAI = getOpponentAI();
|
||||
List<StateAction> gameHistory = new ArrayList<>();
|
||||
PlayResult state = new PlayResult(GameState.NORMAL,reversi.getCurrentTurn());
|
||||
|
||||
double reward = 0;
|
||||
|
||||
while (state.state() != GameState.DRAW && state.state() != GameState.WIN){
|
||||
int curr = reversi.getCurrentTurn();
|
||||
long move;
|
||||
if (curr == modelPlayer) {
|
||||
long[] input = reversi.getBoard();
|
||||
if (Math.random() < epsilon) {
|
||||
long moves = reversi.getLegalMoves();
|
||||
move = (long) (Math.random() * Long.bitCount(moves) - .5f);
|
||||
} else {
|
||||
INDArray boardInput = Nd4j.create(new long[][]{input});
|
||||
INDArray prediction = model.output(boardInput);
|
||||
|
||||
int location = pickLegalMove(prediction, reversi);
|
||||
gameHistory.add(new StateAction(input, location));
|
||||
move = location;
|
||||
}
|
||||
}else{
|
||||
move = opponentAI.getMove(reversi);
|
||||
}
|
||||
state = reversi.play(move);
|
||||
}
|
||||
|
||||
//IO.println(model.params());
|
||||
BitboardReversi.Score score = reversi.getScore();
|
||||
int scoreDif = abs(score.black() - score.white());
|
||||
if (score.black() > score.white()){
|
||||
reward = 1 + ((scoreDif / 64.0) * 0.5);
|
||||
}else if (score.black() < score.white()){
|
||||
reward = -1 - ((scoreDif / 64.0) * 0.5);
|
||||
}else{
|
||||
reward = 0;
|
||||
}
|
||||
|
||||
if (modelPlayer == 'W'){
|
||||
reward = -reward;
|
||||
}
|
||||
|
||||
|
||||
for (StateAction step : gameHistory){
|
||||
trainFromHistory(step, reward);
|
||||
}
|
||||
|
||||
//IO.println("Wr: " + (double)p1wins/(game+1) + " draws: " + draws);
|
||||
if(game % 100 == 0){
|
||||
IO.println("Completed game " + game + " | Reward: " + reward);
|
||||
//IO.println(Arrays.toString(reversi.getBoardDouble()));
|
||||
}
|
||||
}
|
||||
long end = System.nanoTime();
|
||||
IO.println((end-start));
|
||||
}
|
||||
|
||||
|
||||
private int pickLegalMove(INDArray prediction, BitboardReversi reversi) {
|
||||
double[] logits = prediction.toDoubleVector();
|
||||
long legalMoves = reversi.getLegalMoves();
|
||||
|
||||
if (legalMoves == 0L) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (Math.random() < 0.01) {
|
||||
int randomIndex = (int) (Math.random() * Long.bitCount(legalMoves));
|
||||
long moves = legalMoves;
|
||||
for (int i = 0; i < randomIndex; i++) {
|
||||
moves &= moves - 1;
|
||||
}
|
||||
return Long.numberOfTrailingZeros(moves);
|
||||
}
|
||||
|
||||
int bestMove = -1;
|
||||
double bestVal = Double.NEGATIVE_INFINITY;
|
||||
|
||||
long moves = legalMoves;
|
||||
while (moves != 0L) {
|
||||
int move = Long.numberOfTrailingZeros(moves);
|
||||
double value = logits[move];
|
||||
|
||||
if (value > bestVal) {
|
||||
bestVal = value;
|
||||
bestMove = move;
|
||||
}
|
||||
|
||||
moves &= moves - 1;
|
||||
}
|
||||
|
||||
return bestMove;
|
||||
}
|
||||
|
||||
private AbstractAI<BitboardReversi> getOpponentAI(){
|
||||
return switch ((int) (Math.random() * 4)) {
|
||||
case 0 -> opponentRand;
|
||||
case 1 -> opponentMM;
|
||||
case 2 -> opponentAIML;
|
||||
default -> opponentRand;
|
||||
};
|
||||
}
|
||||
|
||||
private void trainFromHistory(StateAction step, double reward){
|
||||
double[] output = new double[64];
|
||||
output[step.action] = reward;
|
||||
|
||||
DataSet ds = new DataSet(
|
||||
Nd4j.create(new long[][] { step.state }),
|
||||
Nd4j.create(new double[][] { output })
|
||||
);
|
||||
|
||||
model.fit(ds);
|
||||
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,10 @@
|
||||
package org.toop.game.machinelearning;
|
||||
|
||||
public class StateAction {
|
||||
long[] state;
|
||||
int action;
|
||||
public StateAction(long[] state, int action) {
|
||||
this.state = state;
|
||||
this.action = action;
|
||||
}
|
||||
}
|
||||
@@ -4,52 +4,52 @@ import org.toop.framework.gameFramework.model.player.*;
|
||||
import org.toop.framework.gameFramework.model.game.TurnBasedGame;
|
||||
|
||||
/**
|
||||
* Represents a player controlled by an AI in a game.
|
||||
* <p>
|
||||
* This player uses an {@link AbstractAI} instance to determine its moves. The generic
|
||||
* parameter {@code T} specifies the type of {@link GameR} the AI can handle.
|
||||
* </p>
|
||||
* Represents a player controlled by an AI.
|
||||
*
|
||||
* @param <T> the specific type of game this AI player can play
|
||||
* @param <T> the type of turn-based game
|
||||
*/
|
||||
public class ArtificialPlayer<T extends TurnBasedGame<T>> extends AbstractPlayer<T> {
|
||||
|
||||
/** The AI instance used to calculate moves. */
|
||||
private final AI<T> ai;
|
||||
|
||||
/**
|
||||
* Constructs a new ArtificialPlayer using the specified AI.
|
||||
* Creates a new AI-controlled player.
|
||||
*
|
||||
* @param ai the AI instance that determines moves for this player
|
||||
* @param ai the AI controlling this player
|
||||
* @param name the player's name
|
||||
*/
|
||||
public ArtificialPlayer(AI<T> ai, String name) {
|
||||
super(name);
|
||||
this.ai = ai;
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a copy of another AI-controlled player.
|
||||
*
|
||||
* @param other the player to copy
|
||||
*/
|
||||
public ArtificialPlayer(ArtificialPlayer<T> other) {
|
||||
super(other);
|
||||
this.ai = other.ai.deepCopy();
|
||||
}
|
||||
|
||||
/**
|
||||
* Determines the next move for this player using its AI.
|
||||
* <p>
|
||||
* This method overrides {@link AbstractPlayer#getMove(GameR)}. Because the AI is
|
||||
* typed to {@code T}, a runtime cast is required. It is the caller's
|
||||
* responsibility to ensure that {@code gameCopy} is of type {@code T}.
|
||||
* </p>
|
||||
* Determines the player's move using the AI.
|
||||
*
|
||||
* @param gameCopy a copy of the current game state
|
||||
* @return the integer representing the chosen move
|
||||
* @throws ClassCastException if {@code gameCopy} is not of type {@code T}
|
||||
* @param gameCopy a copy of the current game
|
||||
* @return the move chosen by the AI
|
||||
*/
|
||||
public long getMove(T gameCopy) {
|
||||
protected long determineMove(T gameCopy) {
|
||||
return ai.getMove(gameCopy);
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a deep copy of this AI player.
|
||||
*
|
||||
* @return a copy of this player
|
||||
*/
|
||||
@Override
|
||||
public ArtificialPlayer<T> deepCopy() {
|
||||
return new ArtificialPlayer<T>(this);
|
||||
return new ArtificialPlayer<>(this);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -2,85 +2,86 @@ package org.toop.game.players;
|
||||
|
||||
import org.toop.framework.gameFramework.model.game.TurnBasedGame;
|
||||
import org.toop.framework.gameFramework.model.player.AbstractPlayer;
|
||||
import org.toop.framework.gameFramework.model.player.Player;
|
||||
|
||||
import java.util.concurrent.CompletableFuture;
|
||||
import java.util.concurrent.ExecutionException;
|
||||
|
||||
/**
|
||||
* Represents a local player who provides moves manually.
|
||||
*
|
||||
* @param <T> the type of turn-based game
|
||||
*/
|
||||
public class LocalPlayer<T extends TurnBasedGame<T>> extends AbstractPlayer<T> {
|
||||
// Future can be used with event system, IF unsubscribeAfterSuccess works...
|
||||
// private CompletableFuture<Integer> LastMove = new CompletableFuture<>();
|
||||
|
||||
private CompletableFuture<Long> LastMove;
|
||||
private CompletableFuture<Long> LastMove = new CompletableFuture<>();
|
||||
|
||||
/**
|
||||
* Creates a new local player with the given name.
|
||||
*
|
||||
* @param name the player's name
|
||||
*/
|
||||
public LocalPlayer(String name) {
|
||||
super(name);
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a copy of another local player.
|
||||
*
|
||||
* @param other the player to copy
|
||||
*/
|
||||
public LocalPlayer(LocalPlayer<T> other) {
|
||||
super(other);
|
||||
this.LastMove = other.LastMove;
|
||||
}
|
||||
|
||||
/**
|
||||
* Waits for and returns the player's next legal move.
|
||||
*
|
||||
* @param gameCopy a copy of the current game
|
||||
* @return the chosen move
|
||||
*/
|
||||
@Override
|
||||
public long getMove(T gameCopy) {
|
||||
return getValidMove(gameCopy);
|
||||
protected long determineMove(T gameCopy) {
|
||||
long legalMoves = gameCopy.getLegalMoves();
|
||||
long move;
|
||||
|
||||
do {
|
||||
move = getLastMove();
|
||||
} while ((legalMoves & move) == 0);
|
||||
|
||||
return move;
|
||||
}
|
||||
|
||||
public void setMove(long move) {
|
||||
/**
|
||||
* Sets the player's last move.
|
||||
*
|
||||
* @param move the move to set
|
||||
*/
|
||||
public void setLastMove(long move) {
|
||||
LastMove.complete(move);
|
||||
}
|
||||
|
||||
// TODO: helper function, would like to replace to get rid of this method
|
||||
public static boolean contains(int[] array, int value){
|
||||
for (int i : array) if (i == value) return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
private long getMove2(T gameCopy) {
|
||||
LastMove = new CompletableFuture<>();
|
||||
long move = 0;
|
||||
/**
|
||||
* Waits for the next move from the player.
|
||||
*
|
||||
* @return the chosen move or 0 if interrupted
|
||||
*/
|
||||
private long getLastMove() {
|
||||
LastMove = new CompletableFuture<>(); // Reset the future
|
||||
try {
|
||||
move = LastMove.get();
|
||||
System.out.println(Long.toBinaryString(move));
|
||||
} catch (InterruptedException | ExecutionException e) {
|
||||
// TODO: Add proper logging.
|
||||
e.printStackTrace();
|
||||
return LastMove.get();
|
||||
} catch (ExecutionException | InterruptedException e) {
|
||||
return 0;
|
||||
}
|
||||
return move;
|
||||
}
|
||||
|
||||
protected long getValidMove(T gameCopy){
|
||||
// Get this player's valid moves
|
||||
long validMoves = gameCopy.getLegalMoves();
|
||||
// Make sure provided move is valid
|
||||
// TODO: Limit amount of retries?
|
||||
// TODO: Stop copying game so many times
|
||||
long move = getMove2(gameCopy.deepCopy());
|
||||
while ((validMoves & move) == 0) {
|
||||
System.out.println("Not a valid move, try again");
|
||||
move = getMove2(gameCopy.deepCopy());
|
||||
}
|
||||
return move;
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a deep copy of this local player.
|
||||
*
|
||||
* @return a copy of this player
|
||||
*/
|
||||
@Override
|
||||
public LocalPlayer<T> deepCopy() {
|
||||
return new LocalPlayer<T>(this.getName());
|
||||
return new LocalPlayer<>(this);
|
||||
}
|
||||
|
||||
/*public void register() {
|
||||
// Listening to PlayerAttemptedMove
|
||||
new EventFlow().listen(GUIEvents.PlayerAttemptedMove.class, event -> {
|
||||
if (!LastMove.isDone()) {
|
||||
LastMove.complete(event.move()); // complete the future
|
||||
}
|
||||
}, true); // auto-unsubscribe
|
||||
}
|
||||
|
||||
// This blocks until the next move arrives
|
||||
public int take() throws ExecutionException, InterruptedException {
|
||||
int move = LastMove.get(); // blocking
|
||||
LastMove = new CompletableFuture<>(); // reset for next move
|
||||
return move;
|
||||
}*/
|
||||
}
|
||||
|
||||
@@ -5,30 +5,45 @@ import org.toop.framework.gameFramework.model.player.AbstractPlayer;
|
||||
import org.toop.framework.gameFramework.model.player.Player;
|
||||
|
||||
/**
|
||||
* Represents a player controlled remotely or over a network.
|
||||
* <p>
|
||||
* This class extends {@link AbstractPlayer} and can be used to implement game logic
|
||||
* where moves are provided by an external source (e.g., another user or a server).
|
||||
* Currently, this class is a placeholder and does not implement move logic.
|
||||
* </p>
|
||||
* Represents a player that participates online.
|
||||
*
|
||||
* @param <T> the type of turn-based game
|
||||
*/
|
||||
public class OnlinePlayer<T extends TurnBasedGame<T>> extends AbstractPlayer<T> {
|
||||
|
||||
/**
|
||||
* Constructs a new OnlinePlayer.
|
||||
* <p>
|
||||
* Currently, no additional initialization is performed. Subclasses or
|
||||
* future implementations should provide mechanisms to receive moves from
|
||||
* an external source.
|
||||
* Creates a new online player with the given name.
|
||||
*
|
||||
* @param name the name of the player
|
||||
*/
|
||||
public OnlinePlayer(String name) {
|
||||
super(name);
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a copy of another online player.
|
||||
*
|
||||
* @param other the player to copy
|
||||
*/
|
||||
public OnlinePlayer(OnlinePlayer<T> other) {
|
||||
super(other);
|
||||
}
|
||||
|
||||
/**
|
||||
* {@inheritDoc}
|
||||
* <p>
|
||||
* This method is not supported for online players.
|
||||
*
|
||||
* @throws UnsupportedOperationException always
|
||||
*/
|
||||
@Override
|
||||
protected long determineMove(T gameCopy) {
|
||||
throw new UnsupportedOperationException("An online player does not support determining move");
|
||||
}
|
||||
|
||||
/**
|
||||
* {@inheritDoc}
|
||||
*/
|
||||
@Override
|
||||
public Player<T> deepCopy() {
|
||||
return new OnlinePlayer<>(this);
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
package org.toop.game.players;
|
||||
package org.toop.game.players.ai;
|
||||
|
||||
import org.toop.framework.gameFramework.GameState;
|
||||
import org.toop.framework.gameFramework.model.game.PlayResult;
|
||||
@@ -1,4 +1,4 @@
|
||||
package org.toop.game.players;
|
||||
package org.toop.game.players.ai;
|
||||
|
||||
import org.toop.framework.gameFramework.model.game.TurnBasedGame;
|
||||
import org.toop.framework.gameFramework.model.player.AbstractAI;
|
||||
80
game/src/main/java/org/toop/game/players/ai/ReversiAIML.java
Normal file
80
game/src/main/java/org/toop/game/players/ai/ReversiAIML.java
Normal file
@@ -0,0 +1,80 @@
|
||||
package org.toop.game.players.ai;
|
||||
|
||||
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
|
||||
import org.deeplearning4j.util.ModelSerializer;
|
||||
import org.nd4j.linalg.api.ndarray.INDArray;
|
||||
import org.nd4j.linalg.factory.Nd4j;
|
||||
import org.toop.framework.gameFramework.model.game.TurnBasedGame;
|
||||
import org.toop.framework.gameFramework.model.player.AI;
|
||||
import org.toop.framework.gameFramework.model.player.AbstractAI;
|
||||
import org.toop.game.games.reversi.BitboardReversi;
|
||||
|
||||
import java.io.IOException;
|
||||
import java.io.InputStream;
|
||||
|
||||
import static java.lang.Math.random;
|
||||
|
||||
public class ReversiAIML<T extends TurnBasedGame<T>> extends AbstractAI<T> {
|
||||
|
||||
MultiLayerNetwork model;
|
||||
|
||||
public ReversiAIML() {
|
||||
InputStream is = getClass().getResourceAsStream("/reversi-model.zip");
|
||||
try {
|
||||
assert is != null;
|
||||
model = ModelSerializer.restoreMultiLayerNetwork(is);
|
||||
} catch (IOException e) {}
|
||||
}
|
||||
|
||||
private int pickLegalMove(INDArray prediction, BitboardReversi reversi) {
|
||||
double[] logits = prediction.toDoubleVector();
|
||||
long legalMoves = reversi.getLegalMoves();
|
||||
|
||||
if (legalMoves == 0L) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (Math.random() < 0.01) {
|
||||
int randomIndex = (int) (Math.random() * Long.bitCount(legalMoves));
|
||||
long moves = legalMoves;
|
||||
for (int i = 0; i < randomIndex; i++) {
|
||||
moves &= moves - 1;
|
||||
}
|
||||
return Long.numberOfTrailingZeros(moves);
|
||||
}
|
||||
|
||||
int bestMove = -1;
|
||||
double bestVal = Double.NEGATIVE_INFINITY;
|
||||
|
||||
long moves = legalMoves;
|
||||
while (moves != 0L) {
|
||||
int move = Long.numberOfTrailingZeros(moves);
|
||||
double value = logits[move];
|
||||
|
||||
if (value > bestVal) {
|
||||
bestVal = value;
|
||||
bestMove = move;
|
||||
}
|
||||
|
||||
moves &= moves - 1;
|
||||
}
|
||||
|
||||
return bestMove;
|
||||
}
|
||||
|
||||
@Override
|
||||
public long getMove(T game) {
|
||||
long[] input = game.getBoard();
|
||||
|
||||
INDArray boardInput = Nd4j.create(new long[][] { input });
|
||||
INDArray prediction = model.output(boardInput);
|
||||
|
||||
int move = pickLegalMove(prediction,(BitboardReversi) game);
|
||||
return move;
|
||||
}
|
||||
|
||||
@Override
|
||||
public ReversiAIML<T> deepCopy() {
|
||||
return new ReversiAIML();
|
||||
}
|
||||
}
|
||||
272
game/src/test/java/org/toop/game/tictactoe/ReversiTest.java
Normal file
272
game/src/test/java/org/toop/game/tictactoe/ReversiTest.java
Normal file
@@ -0,0 +1,272 @@
|
||||
/*//todo fix this mess
|
||||
|
||||
|
||||
|
||||
package org.toop.game.tictactoe;
|
||||
|
||||
import java.util.*;
|
||||
|
||||
import org.junit.jupiter.api.BeforeEach;
|
||||
import org.junit.jupiter.api.Test;
|
||||
import org.toop.framework.gameFramework.model.player.AbstractAI;
|
||||
import org.toop.framework.gameFramework.model.player.Player;
|
||||
import org.toop.game.AI;
|
||||
import org.toop.game.enumerators.GameState;
|
||||
import org.toop.game.games.reversi.ReversiAIR;
|
||||
import org.toop.game.games.reversi.ReversiR;
|
||||
import org.toop.game.records.Move;
|
||||
import org.toop.game.reversi.Reversi;
|
||||
import org.toop.game.reversi.ReversiAI;
|
||||
import org.toop.game.players.ai.ReversiAIML;
|
||||
import org.toop.game.games.reversi.ReversiAISimple;
|
||||
|
||||
import static org.junit.jupiter.api.Assertions.*;
|
||||
|
||||
class ReversiTest {
|
||||
private ReversiR game;
|
||||
private ReversiAIR ai;
|
||||
private ReversiAIML aiml;
|
||||
private ReversiAISimple aiSimple;
|
||||
private AbstractAI<ReversiR> player1;
|
||||
private AbstractAI<ReversiR> player2;
|
||||
private Player[] players = new Player[2];
|
||||
|
||||
@BeforeEach
|
||||
void setup() {
|
||||
game = new ReversiR(players);
|
||||
ai = new ReversiAIR();
|
||||
aiml = new ReversiAIML();
|
||||
aiSimple = new ReversiAISimple();
|
||||
|
||||
}
|
||||
|
||||
|
||||
@Test
|
||||
void testCorrectStartPiecesPlaced() {
|
||||
assertNotNull(game);
|
||||
assertEquals('W', game.getBoard()[27]);
|
||||
assertEquals('B', game.getBoard()[28]);
|
||||
assertEquals('B', game.getBoard()[35]);
|
||||
assertEquals('W', game.getBoard()[36]);
|
||||
}
|
||||
|
||||
@Test
|
||||
void testGetLegalMovesAtStart() {
|
||||
Move[] moves = game.getLegalMoves();
|
||||
List<Move> expectedMoves = List.of(
|
||||
new Move(19, 'B'),
|
||||
new Move(26, 'B'),
|
||||
new Move(37, 'B'),
|
||||
new Move(44, 'B')
|
||||
);
|
||||
assertNotNull(moves);
|
||||
assertTrue(moves.length > 0);
|
||||
assertMovesMatchIgnoreOrder(expectedMoves, Arrays.asList(moves));
|
||||
}
|
||||
|
||||
private void assertMovesMatchIgnoreOrder(List<Move> expected, List<Move> actual) {
|
||||
assertEquals(expected.size(), actual.size());
|
||||
for (int i = 0; i < expected.size(); i++) {
|
||||
assertTrue(actual.contains(expected.get(i)));
|
||||
assertTrue(expected.contains(actual.get(i)));
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
void testMakeValidMoveFlipsPieces() {
|
||||
game.play(new Move(19, 'B'));
|
||||
assertEquals('B', game.getBoard()[19]);
|
||||
assertEquals('B', game.getBoard()[27], "Piece should have flipped to B");
|
||||
}
|
||||
|
||||
@Test
|
||||
void testMakeInvalidMoveDoesNothing() {
|
||||
char[] before = game.getBoard().clone();
|
||||
game.play(new Move(0, 'B'));
|
||||
assertArrayEquals(before, game.getBoard(), "Board should not change on invalid move");
|
||||
}
|
||||
|
||||
@Test
|
||||
void testTurnSwitchesAfterValidMove() {
|
||||
char current = game.getCurrentPlayer();
|
||||
game.play(game.getLegalMoves()[0]);
|
||||
assertNotEquals(current, game.getCurrentPlayer(), "Player turn should switch after a valid move");
|
||||
}
|
||||
|
||||
@Test
|
||||
void testCountScoreCorrectlyAtStart() {
|
||||
long start = System.nanoTime();
|
||||
Reversi.Score score = game.getScore();
|
||||
assertEquals(2, score.player1Score()); // Black
|
||||
assertEquals(2, score.player2Score()); // White
|
||||
long end = System.nanoTime();
|
||||
IO.println((end - start));
|
||||
}
|
||||
|
||||
@Test
|
||||
void zLegalMovesInCertainPosition() {
|
||||
game.play(new Move(19, 'B'));
|
||||
game.play(new Move(20, 'W'));
|
||||
Move[] moves = game.getLegalMoves();
|
||||
List<Move> expectedMoves = List.of(
|
||||
new Move(13, 'B'),
|
||||
new Move(21, 'B'),
|
||||
new Move(29, 'B'),
|
||||
new Move(37, 'B'),
|
||||
new Move(45, 'B'));
|
||||
assertNotNull(moves);
|
||||
assertTrue(moves.length > 0);
|
||||
IO.println(Arrays.toString(moves));
|
||||
assertMovesMatchIgnoreOrder(expectedMoves, Arrays.asList(moves));
|
||||
}
|
||||
|
||||
@Test
|
||||
void testCountScoreCorrectlyAtEnd() {
|
||||
for (int i = 0; i < 1; i++) {
|
||||
game = new Reversi();
|
||||
Move[] legalMoves = game.getLegalMoves();
|
||||
while (legalMoves.length > 0) {
|
||||
game.play(legalMoves[(int) (Math.random() * legalMoves.length)]);
|
||||
legalMoves = game.getLegalMoves();
|
||||
}
|
||||
Reversi.Score score = game.getScore();
|
||||
IO.println(score.player1Score());
|
||||
IO.println(score.player2Score());
|
||||
|
||||
for (int r = 0; r < game.getRowSize(); r++) {
|
||||
char[] row = Arrays.copyOfRange(game.getBoard(), r * game.getColumnSize(), (r + 1) * game.getColumnSize());
|
||||
IO.println(Arrays.toString(row));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
void testPlayerMustSkipTurnIfNoValidMoves() {
|
||||
game.play(new Move(19, 'B'));
|
||||
game.play(new Move(34, 'W'));
|
||||
game.play(new Move(45, 'B'));
|
||||
game.play(new Move(11, 'W'));
|
||||
game.play(new Move(42, 'B'));
|
||||
game.play(new Move(54, 'W'));
|
||||
game.play(new Move(37, 'B'));
|
||||
game.play(new Move(46, 'W'));
|
||||
game.play(new Move(63, 'B'));
|
||||
game.play(new Move(62, 'W'));
|
||||
game.play(new Move(29, 'B'));
|
||||
game.play(new Move(50, 'W'));
|
||||
game.play(new Move(55, 'B'));
|
||||
game.play(new Move(30, 'W'));
|
||||
game.play(new Move(53, 'B'));
|
||||
game.play(new Move(38, 'W'));
|
||||
game.play(new Move(61, 'B'));
|
||||
game.play(new Move(52, 'W'));
|
||||
game.play(new Move(51, 'B'));
|
||||
game.play(new Move(60, 'W'));
|
||||
game.play(new Move(59, 'B'));
|
||||
assertEquals('B', game.getCurrentPlayer());
|
||||
game.play(ai.findBestMove(game, 5));
|
||||
game.play(ai.findBestMove(game, 5));
|
||||
}
|
||||
|
||||
@Test
|
||||
void testGameShouldEndIfNoValidMoves() {
|
||||
//European Grand Prix Ghent 2017: Replay Hassan - Verstuyft J. (3-17)
|
||||
game.play(new Move(19, 'B'));
|
||||
game.play(new Move(20, 'W'));
|
||||
game.play(new Move(29, 'B'));
|
||||
game.play(new Move(22, 'W'));
|
||||
game.play(new Move(21, 'B'));
|
||||
game.play(new Move(34, 'W'));
|
||||
game.play(new Move(23, 'B'));
|
||||
game.play(new Move(13, 'W'));
|
||||
game.play(new Move(26, 'B'));
|
||||
game.play(new Move(18, 'W'));
|
||||
game.play(new Move(12, 'B'));
|
||||
game.play(new Move(4, 'W'));
|
||||
game.play(new Move(17, 'B'));
|
||||
game.play(new Move(31, 'W'));
|
||||
GameState stateTurn15 = game.play(new Move(39, 'B'));
|
||||
assertEquals(GameState.NORMAL, stateTurn15);
|
||||
GameState stateTurn16 = game.play(new Move(16, 'W'));
|
||||
assertEquals(GameState.WIN, stateTurn16);
|
||||
GameState stateTurn17 = game.play(new Move(5, 'B'));
|
||||
assertNull(stateTurn17);
|
||||
Reversi.Score score = game.getScore();
|
||||
assertEquals(3, score.player1Score());
|
||||
assertEquals(17, score.player2Score());
|
||||
}
|
||||
|
||||
@Test
|
||||
void testAISelectsLegalMove() {
|
||||
Move move = ai.findBestMove(game, 4);
|
||||
assertNotNull(move);
|
||||
assertTrue(containsMove(game.getLegalMoves(), move), "AI should always choose a legal move");
|
||||
}
|
||||
|
||||
private boolean containsMove(Move[] moves, Move move) {
|
||||
for (Move m : moves) {
|
||||
if (m.equals(move)) return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
@Test
|
||||
void testAis() {
|
||||
player1 = aiml;
|
||||
player2 = ai;
|
||||
testAIvsAIML();
|
||||
player2 = aiSimple;
|
||||
testAIvsAIML();
|
||||
player1 = ai;
|
||||
testAIvsAIML();
|
||||
player2 = aiml;
|
||||
testAIvsAIML();
|
||||
player1 = aiml;
|
||||
testAIvsAIML();
|
||||
player1 = aiSimple;
|
||||
testAIvsAIML();
|
||||
}
|
||||
|
||||
@Test
|
||||
void testAIvsAIML() {
|
||||
if(player1 == null || player2 == null) {
|
||||
player1 = aiml;
|
||||
player2 = ai;
|
||||
}
|
||||
int totalGames = 2000;
|
||||
IO.println("Testing... " + player1.getClass().getSimpleName() + " vs " + player2.getClass().getSimpleName() + " for " + totalGames + " games");
|
||||
int p1wins = 0;
|
||||
int p2wins = 0;
|
||||
int draws = 0;
|
||||
List<Integer> moves = new ArrayList<>();
|
||||
for (int i = 0; i < totalGames; i++) {
|
||||
game = new ReversiR();
|
||||
while (!game.isGameOver()) {
|
||||
char curr = game.getCurrentPlayer();
|
||||
Move move;
|
||||
if (curr == 'B') {
|
||||
move = player1.findBestMove(game, 5);
|
||||
} else {
|
||||
move = player2.findBestMove(game, 5);
|
||||
}
|
||||
if (i%500 == 0) moves.add(move.position());
|
||||
game.play(move);
|
||||
}
|
||||
if (i%500 == 0) {
|
||||
IO.println(moves);
|
||||
moves.clear();
|
||||
}
|
||||
int winner = game.getWinner();
|
||||
if (winner == 1) {
|
||||
p1wins++;
|
||||
} else if (winner == 2) {
|
||||
p2wins++;
|
||||
} else {
|
||||
draws++;
|
||||
}
|
||||
}
|
||||
IO.println("p1 winrate: " + p1wins + "/" + totalGames + " = " + (double) p1wins / totalGames + "\np2wins: " + p2wins + " draws: " + draws);
|
||||
}
|
||||
}
|
||||
|
||||
*/
|
||||
78
game/src/test/java/org/toop/game/tictactoe/TestReversi.java
Normal file
78
game/src/test/java/org/toop/game/tictactoe/TestReversi.java
Normal file
@@ -0,0 +1,78 @@
|
||||
package org.toop.game.tictactoe;
|
||||
|
||||
import java.util.*;
|
||||
|
||||
import org.junit.jupiter.api.BeforeEach;
|
||||
import org.junit.jupiter.api.Test;
|
||||
import org.toop.framework.gameFramework.model.player.Player;
|
||||
import org.toop.game.games.reversi.BitboardReversi;
|
||||
import org.toop.game.players.ArtificialPlayer;
|
||||
import org.toop.game.players.ai.MiniMaxAI;
|
||||
import org.toop.game.players.ai.RandomAI;
|
||||
|
||||
import static org.junit.jupiter.api.Assertions.*;
|
||||
|
||||
public class TestReversi {
|
||||
private BitboardReversi game;
|
||||
private Player[] players;
|
||||
|
||||
@BeforeEach
|
||||
void setup(){
|
||||
players = new Player[2];
|
||||
players[0] = new ArtificialPlayer<BitboardReversi>(new RandomAI<BitboardReversi>(),"randomAI");
|
||||
players[1] = new ArtificialPlayer<BitboardReversi>(new MiniMaxAI<BitboardReversi>(10),"miniMaxAI");
|
||||
game = new BitboardReversi(players);
|
||||
|
||||
}
|
||||
|
||||
@Test
|
||||
void testCorrectStartPiecesPlaced() {
|
||||
assertNotNull(game);
|
||||
long[] board = game.getBoard();
|
||||
IO.println(Long.toBinaryString(board[0]));
|
||||
IO.println(Long.toBinaryString(board[1]));
|
||||
long black = board[0];
|
||||
long white = board[1];
|
||||
assertEquals(1L, ((white >>> 27) & 1L)); //checks if the 27-shifted long has a 1 bit
|
||||
assertEquals(1L, ((black >>> 28) & 1L));
|
||||
assertEquals(1L, ((black >>> 35) & 1L));
|
||||
assertEquals(1L, ((white >>> 36) & 1L));
|
||||
}
|
||||
|
||||
@Test
|
||||
void testPlayGames(){
|
||||
int totalGames = 1;
|
||||
long start = System.nanoTime();
|
||||
long midtime = System.nanoTime();
|
||||
int p1wins = 0;
|
||||
int p2wins = 0;
|
||||
int draws = 0;
|
||||
|
||||
for (int i = 0; i < totalGames; i++){
|
||||
game = new BitboardReversi(players);
|
||||
while(!game.isGameOver()){
|
||||
midtime = System.nanoTime();
|
||||
int currentTurn = game.getCurrentTurn();
|
||||
long move = players[currentTurn].getMove(game.deepCopy());
|
||||
game.play(move);
|
||||
IO.println(System.nanoTime() - midtime);
|
||||
}
|
||||
switch (game.getWinner()){
|
||||
case 0:
|
||||
p1wins++;
|
||||
break;
|
||||
case 1:
|
||||
p2wins++;
|
||||
break;
|
||||
case -1:
|
||||
draws++;
|
||||
break;
|
||||
|
||||
}
|
||||
}
|
||||
System.out.println(System.nanoTime() - start);
|
||||
IO.println(p1wins + " " + p2wins + " " + draws);
|
||||
assertEquals(totalGames, p1wins + p2wins + draws);
|
||||
IO.println("p1 wr: " + p1wins + "/" + totalGames + " = " + (double) p1wins / totalGames);
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user